IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311750.html
   My bibliography  Save this article

Organic matter processing by heterotrophic bacterioplankton in a large tropical river: Relating elemental composition and potential carbon mineralization

Author

Listed:
  • Daniel Cuevas-Lara
  • Felipe García-Oliva
  • Salvador Sánchez-Carrillo
  • Javier Alcocer

Abstract

River hydrology shapes the sources, concentration, and stoichiometry of organic matter within drainage basins. However, our understanding of how the microbes process dissolved organic matter (DOM) and recycle nutrients in tropical rivers needs to be improved. This study explores the relationships between elemental DOM composition (carbon/nitrogen/phosphorus: C/N/P), C and N uptake, and C mineralization by autochthonous bacterioplankton in the Usumacinta River, one of the most important fluvial systems in Mexico. Our study investigated changes in the composition and concentration of DOM and evaluated carbon dioxide (CO2)production rates (C–CO2) through laboratory experiments. We compared three sites representing the middle and lower river basins, including their transitional zones, during the rainy and dry seasons. After incubation (120 h at 25°C), the DOM decreased between 25% and 89% of C content. Notably, the initial high proportion of C in DOM in samples from the middle–forested zone and the transition led to elevated C–CO2 rates (>10 mg l−1 day−1), in contrast to the lower initial C proportion and subsequent C–CO2 rates (

Suggested Citation

  • Daniel Cuevas-Lara & Felipe García-Oliva & Salvador Sánchez-Carrillo & Javier Alcocer, 2024. "Organic matter processing by heterotrophic bacterioplankton in a large tropical river: Relating elemental composition and potential carbon mineralization," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-22, November.
  • Handle: RePEc:plo:pone00:0311750
    DOI: 10.1371/journal.pone.0311750
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311750
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311750&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laurel M. Lynch & Nicholas A. Sutfin & Timothy S. Fegel & Claudia M. Boot & Timothy P. Covino & Matthew D. Wallenstein, 2019. "River channel connectivity shifts metabolite composition and dissolved organic matter chemistry," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang Hu & Kyoung-Soon Jang & Andrew J. Tanentzap & Wenqian Zhao & Jay T. Lennon & Jinfu Liu & Mingjia Li & James Stegen & Mira Choi & Yahai Lu & Xiaojuan Feng & Jianjun Wang, 2024. "Thermal responses of dissolved organic matter under global change," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Erika C. Freeman & Erik J. S. Emilson & Thorsten Dittmar & Lucas P. P. Braga & Caroline E. Emilson & Tobias Goldhammer & Christine Martineau & Gabriel Singer & Andrew J. Tanentzap, 2024. "Universal microbial reworking of dissolved organic matter along environmental gradients," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.