IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311129.html
   My bibliography  Save this article

Statistical inference of entropy functions of generalized inverse exponential model under progressive type-II censoring test

Author

Listed:
  • Qin Gong
  • Bin Yin

Abstract

This article explores the estimation of Shannon entropy and Rényi entropy based on the generalized inverse exponential distribution under the condition of stepwise Type II truncated samples. Firstly, we analyze the maximum likelihood estimation and interval estimation of Shannon entropy and Rényi entropy for the generalized inverse exponential distribution. In this process, we use the bootstrap method to construct confidence intervals for Shannon entropy and Rényi entropy. Next, we select the gamma distribution as the prior distribution and apply the Lindley approximation algorithm to calculate `estimates of Shannon entropy and Rényi entropy under different loss functions including Linex loss function, entropy loss function, and DeGroot loss function respectively. Afterwards, simulation is used to calculate estimates and corresponding mean square errors of Shannon entropy and Rényi entropy in GIED model. The research results show that under DeGroot loss function, estimation accuracy of Shannon entropy and Rényi entropy for generalized inverse exponential distribution is relatively high, overall Bayesian estimation performs better than maximum likelihood estimation. Finally, we demonstrate effectiveness of our estimation method in practical applications using a set of real data.

Suggested Citation

  • Qin Gong & Bin Yin, 2024. "Statistical inference of entropy functions of generalized inverse exponential model under progressive type-II censoring test," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-29, September.
  • Handle: RePEc:plo:pone00:0311129
    DOI: 10.1371/journal.pone.0311129
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311129
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311129&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Berred & Alexei Stepanov, 2022. "Asymptotic properties of lower exponential spacings under Type-II progressive censoring," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(14), pages 4841-4853, July.
    2. Zhang, Chunfang & Wang, Liang & Bai, Xuchao & Huang, Jianan, 2022. "Bayesian reliability analysis for copula based step-stress partially accelerated dependent competing risks model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    3. Nguyen Ngoc Thach, 2023. "Applying Monte Carlo Simulations to a Small Data Analysis of a Case of Economic Growth in COVID-19 Times," SAGE Open, , vol. 13(2), pages 21582440231, June.
    4. Hanlin Li & Longxia Qian & Jianhong Yang & Suzhen Dang & Mei Hong, 2023. "Parameter Estimation for Univariate Hydrological Distribution Using Improved Bootstrap with Small Samples," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1055-1082, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thiago A. N. De Andrade & Frank Gomes‐Silva & Indranil Ghosh, 2025. "New Parametric Approach for Modeling Hydrological Data: An Alternative to the Beta, Kumaraswamy, and Simplex Models," Environmetrics, John Wiley & Sons, Ltd., vol. 36(2), March.
    2. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    3. Kouao Laurent Kouadio & Jianxin Liu & Serge Kouamelan Kouamelan & Rong Liu, 2023. "Ensemble Learning Paradigms for Flow Rate Prediction Boosting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4413-4431, September.
    4. Abba, Badamasi & Wu, Jinbiao & Muhammad, Mustapha, 2024. "A robust multi-risk model and its reliability relevance: A Bayes study with Hamiltonian Monte Carlo methodology," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Nguyen Ngoc Thach, 2024. "Bayesian Hierarchical Modeling of Individual Effects: Renewables and Non-Renewables on Global Economic Growth," SAGE Open, , vol. 14(3), pages 21582440241, August.
    6. Wen, Jiayi & Li, Xiaoxuan & Xue, Jingwei, 2024. "Feasibility evaluation of Copula theory for substation equipment with multiple nonlinear-related seismic response indexes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.