IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310365.html
   My bibliography  Save this article

Optimization of surface roughness for titanium alloy based on multi-strategy fusion snake algorithm

Author

Listed:
  • Nanqi Li
  • ZuEn Shang
  • Yang Zhao
  • Hui Wang
  • Qiyuan Min

Abstract

Titanium alloy is known for its low thermal conductivity, small elastic modulus, and propensity for work hardening, posing challenges in predicting surface quality post high-speed milling. Since surface quality significantly influences wear resistance, fatigue strength, and corrosion resistance of parts, optimizing milling parameters becomes crucial for enhancing service performance. This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality. The optimization objective is surface roughness. Initially, a prediction model for titanium alloy milling surface roughness is established using the response surface method to ensure continuous prediction. Subsequently, the snake algorithm with multi-strategy fusion is introduced. Population initialization employs an orthogonal matrix strategy, enhancing population diversity and distribution. A dynamic adaptive mechanism replaces the original static mechanism for optimizing food quantity and temperature, accelerating convergence. Joint reverse strategy aids in selecting and generating individuals with higher fitness, fortifying the algorithm against local optima. Experimental results across five benchmarks employing various optimization algorithms demonstrate the superiority of the MSSO algorithm in convergence speed and accuracy. Finally, the multi-strategy snake algorithm optimizes the objective equation, with milling parameter experiments revealing a 55.7 percent increase in surface roughness of Ti64 compared to pre-optimization levels. This highlights the effectiveness of the proposed method in enhancing surface quality.

Suggested Citation

  • Nanqi Li & ZuEn Shang & Yang Zhao & Hui Wang & Qiyuan Min, 2025. "Optimization of surface roughness for titanium alloy based on multi-strategy fusion snake algorithm," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-24, January.
  • Handle: RePEc:plo:pone00:0310365
    DOI: 10.1371/journal.pone.0310365
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310365
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310365&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Changsheng Wen & Heming Jia & Di Wu & Honghua Rao & Shanglong Li & Qingxin Liu & Laith Abualigah, 2022. "Modified Remora Optimization Algorithm with Multistrategies for Global Optimization Problem," Mathematics, MDPI, vol. 10(19), pages 1-36, October.
    2. Wenlong Tang & Hao Cha & Min Wei & Bin Tian, 2019. "Estimation of surface-based duct parameters from automatic identification system using the Levy flight quantum-behaved particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Taylor & Francis Journals, vol. 33(7), pages 827-837, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honghua Rao & Heming Jia & Di Wu & Changsheng Wen & Shanglong Li & Qingxin Liu & Laith Abualigah, 2022. "A Modified Group Teaching Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(20), pages 1-36, October.
    2. Jinhua You & Heming Jia & Di Wu & Honghua Rao & Changsheng Wen & Qingxin Liu & Laith Abualigah, 2023. "Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    3. Laith Abualigah & Ali Diabat & Raed Abu Zitar, 2022. "Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-42, November.
    4. Di Wu & Honghua Rao & Changsheng Wen & Heming Jia & Qingxin Liu & Laith Abualigah, 2022. "Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(22), pages 1-41, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.