IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307288.html
   My bibliography  Save this article

An improved mountain gazelle optimizer based on chaotic map and spiral disturbance for medical feature selection

Author

Listed:
  • Ying Li
  • Yanyu Geng
  • Huankun Sheng

Abstract

Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. First, the gazelle population is initialized using iterative chaotic map with infinite collapses (ICMIC) mapping, which increases the diversity of the population. Second, a nonlinear control factor is introduced to balance the exploration and exploitation components of the algorithm. Individuals in the population are perturbed using a spiral perturbation mechanism to enhance the local search capability of the algorithm. Finally, a neighborhood search strategy is used for the optimal individuals to enhance the exploitation and convergence capabilities of the algorithm. The superior ability of the IMGO algorithm to solve continuous problems is demonstrated on 23 benchmark datasets. Then, BIMGO is evaluated on 16 medical datasets of different dimensions and compared with 8 well-known metaheuristic algorithms. The experimental results indicate that BIMGO outperforms the competing algorithms in terms of the fitness value, number of selected features and sensitivity. In addition, the statistical results of the experiments demonstrate the significantly superior ability of BIMGO to select the most effective features in medical datasets.

Suggested Citation

  • Ying Li & Yanyu Geng & Huankun Sheng, 2024. "An improved mountain gazelle optimizer based on chaotic map and spiral disturbance for medical feature selection," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-37, July.
  • Handle: RePEc:plo:pone00:0307288
    DOI: 10.1371/journal.pone.0307288
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307288
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0307288&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingol, Harun & Alatas, Bilal, 2020. "Chaos based optics inspired optimization algorithms as global solution search approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guilin Yang & Liya Yu, 2024. "A chimp algorithm based on the foraging strategy of manta rays and its application," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-20, March.
    2. Bingol, Harun & Alatas, Bilal, 2023. "Chaos enhanced intelligent optimization-based novel deception detection system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Khan, Taimoor Ali & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Mehmood, Khizer & Hsu, Chung-Chian & Raja, Muhammad Asif Zahoor, 2024. "Design of Runge-Kutta optimization for fractional input nonlinear autoregressive exogenous system identification with key-term separation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.