IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0298230.html
   My bibliography  Save this article

A chimp algorithm based on the foraging strategy of manta rays and its application

Author

Listed:
  • Guilin Yang
  • Liya Yu

Abstract

To address the issue of poor performance in the chimp optimization (ChOA) algorithm, a new algorithm called the manta ray-based chimpa optimization algorithm (MChOA) was developed. Introducing the Latin hypercube method to construct the initial population so that the individuals of the initial population are evenly distributed in the solution space, increasing the diversity of the initial population. Introducing nonlinear convergence factors based on positive cut functions to changing the convergence of algorithms, the early survey capabilities and later development capabilities of the algorithm are balanced. The manta ray foraging strategy is introduced at the position update to make up for the defect that the algorithm is prone to local optimization, which effectively improves the optimization performance of the algorithm. To evaluate the performance of the proposed algorithm, 27 well-known test reference functions were selected for experimentation, which showed significant advantages compared to other algorithms. Finally, in order to further verify the algorithm’s applicability in actual production processes, it was applied to solve scheduling problems in three flexible workshop scenarios and an aviation engine job shop scheduling in an enterprise. This confirmed its efficacy in addressing complex real-world problems.

Suggested Citation

  • Guilin Yang & Liya Yu, 2024. "A chimp algorithm based on the foraging strategy of manta rays and its application," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-20, March.
  • Handle: RePEc:plo:pone00:0298230
    DOI: 10.1371/journal.pone.0298230
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298230
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298230&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0298230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingol, Harun & Alatas, Bilal, 2020. "Chaos based optics inspired optimization algorithms as global solution search approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingol, Harun & Alatas, Bilal, 2023. "Chaos enhanced intelligent optimization-based novel deception detection system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Ying Li & Yanyu Geng & Huankun Sheng, 2024. "An improved mountain gazelle optimizer based on chaotic map and spiral disturbance for medical feature selection," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-37, July.
    3. Khan, Taimoor Ali & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Mehmood, Khizer & Hsu, Chung-Chian & Raja, Muhammad Asif Zahoor, 2024. "Design of Runge-Kutta optimization for fractional input nonlinear autoregressive exogenous system identification with key-term separation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0298230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.