IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307159.html
   My bibliography  Save this article

Modeling epidemic dynamics using Graph Attention based Spatial Temporal networks

Author

Listed:
  • Xiaofeng Zhu
  • Yi Zhang
  • Haoru Ying
  • Huanning Chi
  • Guanqun Sun
  • Lingxia Zeng

Abstract

The COVID-19 pandemic and influenza outbreaks have underscored the critical need for predictive models that can effectively integrate spatial and temporal dynamics to enable accurate epidemic forecasting. Traditional time-series analysis approaches have fallen short in capturing the intricate interplay between these factors. Recent advancements have witnessed the incorporation of graph neural networks and machine learning techniques to bridge this gap, enhancing predictive accuracy and providing novel insights into disease spread mechanisms. Notable endeavors include leveraging human mobility data, employing transfer learning, and integrating advanced models such as Transformers and Graph Convolutional Networks (GCNs) to improve forecasting performance across diverse geographies for both influenza and COVID-19. However, these models often face challenges related to data quality, model transferability, and potential overfitting, highlighting the necessity for more adaptable and robust approaches. This paper introduces the Graph Attention-based Spatial Temporal (GAST) model, which employs graph attention networks (GATs) to overcome these limitations by providing a nuanced understanding of epidemic dynamics through a sophisticated spatio-temporal analysis framework. Our contributions include the development and validation of the GAST model, demonstrating its superior forecasting capabilities for influenza and COVID-19 spread, with a particular focus on short-term, daily predictions. The model’s application to both influenza and COVID-19 datasets showcases its versatility and potential to inform public health interventions across a range of infectious diseases.

Suggested Citation

  • Xiaofeng Zhu & Yi Zhang & Haoru Ying & Huanning Chi & Guanqun Sun & Lingxia Zeng, 2024. "Modeling epidemic dynamics using Graph Attention based Spatial Temporal networks," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0307159
    DOI: 10.1371/journal.pone.0307159
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307159
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0307159&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peipei & Zheng, Xinqi & Chen, Yuanming & Xu, Yazhou, 2024. "A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    2. James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.