IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0306420.html
   My bibliography  Save this article

Self-learning activation functions to increase accuracy of privacy-preserving Convolutional Neural Networks with homomorphic encryption

Author

Listed:
  • Bernardo Pulido-Gaytan
  • Andrei Tchernykh

Abstract

The widespread adoption of cloud computing necessitates privacy-preserving techniques that allow information to be processed without disclosure. This paper proposes a method to increase the accuracy and performance of privacy-preserving Convolutional Neural Networks with Homomorphic Encryption (CNN-HE) by Self-Learning Activation Functions (SLAF). SLAFs are polynomials with trainable coefficients updated during training, together with synaptic weights, for each polynomial independently to learn task-specific and CNN-specific features. We theoretically prove its feasibility to approximate any continuous activation function to the desired error as a function of the SLAF degree. Two CNN-HE models are proposed: CNN-HE-SLAF and CNN-HE-SLAF-R. In the first model, all activation functions are replaced by SLAFs, and CNN is trained to find weights and coefficients. In the second one, CNN is trained with the original activation, then weights are fixed, activation is substituted by SLAF, and CNN is shortly re-trained to adapt SLAF coefficients. We show that such self-learning can achieve the same accuracy 99.38% as a non-polynomial ReLU over non-homomorphic CNNs and lead to an increase in accuracy (99.21%) and higher performance (6.26 times faster) than the state-of-the-art CNN-HE CryptoNets on the MNIST optical character recognition benchmark dataset.

Suggested Citation

  • Bernardo Pulido-Gaytan & Andrei Tchernykh, 2024. "Self-learning activation functions to increase accuracy of privacy-preserving Convolutional Neural Networks with homomorphic encryption," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-31, July.
  • Handle: RePEc:plo:pone00:0306420
    DOI: 10.1371/journal.pone.0306420
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306420
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0306420&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0306420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nida Shahid & Tim Rappon & Whitney Berta, 2019. "Applications of artificial neural networks in health care organizational decision-making: A scoping review," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliakbar Hasani & Majid Eskandarpour & Dylan Jones, 2025. "Health care network design with multiple objectives and stakeholders," Annals of Operations Research, Springer, vol. 346(2), pages 1027-1062, March.
    2. Yiğit Kazançoğlu & Muhittin Sağnak & Çisem Lafcı & Sunil Luthra & Anil Kumar & Caner Taçoğlu, 2021. "Big Data-Enabled Solutions Framework to Overcoming the Barriers to Circular Economy Initiatives in Healthcare Sector," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    3. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    4. Saurabh Shukla & Mohd Fadzil Hassan & Muhammad Khalid Khan & Low Tang Jung & Azlan Awang, 2019. "An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-31, November.
    5. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Sabir, Zulqurnain & Said, Salem Ben & Baleanu, Dumitru, 2022. "Swarming optimization to analyze the fractional derivatives and perturbation factors for the novel singular model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Jacques Bughin, 2024. "The Role of Firm AI Capabilities in Generative AI-pair Coding," Working Papers TIMES² 2024-076, ULB -- Universite Libre de Bruxelles.
    8. Pumplun, Luisa & Fecho, Mariska & Islam, Nihal & Buxmann, Peter, 2021. "Machine Learning Systems in Clinics – How Mature Is the Adoption Process in Medical Diagnostics?," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 124660, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Sudatta Kar & Arpan Kumar Kar & Manmohan Prasad Gupta, 2021. "Modeling Drivers and Barriers of Artificial Intelligence Adoption: Insights from a Strategic Management Perspective," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(4), pages 217-238, October.
    10. Abreu, Paulo & Santos, Daniel & Barbosa-Povoa, Ana, 2023. "Data-driven forecasting for operational planning of emergency medical services," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    11. Yasmin MOBASHER, 2022. "The Importance Of Implementing Integrated Information Systems In Hospitals," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 12(5), pages 5-21, October.
    12. Wendell Queiróz Lamas & Leonardo Calache, 2025. "Machine Learning-Based Classification of Productive Systems: A Framework for Operational Optimisation," SN Operations Research Forum, Springer, vol. 6(1), pages 1-49, March.
    13. Bughin, Jacques, 2024. "What drives the corporate payoffs of using generative artificial intelligence?," Structural Change and Economic Dynamics, Elsevier, vol. 71(C), pages 658-668.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0306420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.