IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0302814.html
   My bibliography  Save this article

A high-speed gear reshaping method for electric vehicles combining the effects of input torque and speed variation

Author

Listed:
  • Weifeng Liu
  • Cuicui Wei
  • Bo Wang
  • Zhicheng Ding
  • Guitao Du

Abstract

In this study, we introduce an optimization method for high-speed gear trimming in electric vehicles, focusing on variations in input torque and speed. This approach is designed to aid in vibration suppression in electric vehicle gears. We initially use Tooth Contact Analysis (TCA) and Loaded Tooth Contact Analysis (LTCA) to investigate meshing point localization, considering changes in gear tooth surface and deformations due to load. Based on impact mechanics theory, we then derive a formula for the maximum impact force. A 12-degree-of-freedom bending-torsion-axis coupled dynamic model for the helical gear drive in the gearbox’s input stage is developed using the centralized mass method, allowing for an extensive examination of high-speed gear vibration characteristics. Through a genetic algorithm, we optimize the tooth profile and tooth flank parabolic modification coefficients, resulting in optimal vibration-suppressing tooth surfaces. Experimental results under various input torques and speeds demonstrate that the overall vibration amplitude is stable and lower than that of conventional gear shaping methods. Specifically, the root mean square of vibration acceleration along the meshing line under different conditions is 58.02 m/s2 and 20.33 m/s2, respectively. The vibration acceleration in the direction of the meshing line is 20.33 m/s2 and 20.02 m/s2 under varying torques and speeds, with 20.33 m/s2 being the lowest. Furthermore, the average magnitude of the meshing impact force is significantly reduced to 5015.2. This high-speed gear reshaping method not only enhances gear dynamics and reliability by considering changes in input torque and speed but also effectively reduces vibration in electric vehicle gear systems. The study provides valuable insights and methodologies for the design and optimization of electric vehicle gears, focusing on comprehensive improvement in dynamic performance.

Suggested Citation

  • Weifeng Liu & Cuicui Wei & Bo Wang & Zhicheng Ding & Guitao Du, 2024. "A high-speed gear reshaping method for electric vehicles combining the effects of input torque and speed variation," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-26, June.
  • Handle: RePEc:plo:pone00:0302814
    DOI: 10.1371/journal.pone.0302814
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302814
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0302814&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0302814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Len Gelman & Krzysztof Soliński & Andrew Ball, 2021. "Novel Instantaneous Wavelet Bicoherence for Vibration Fault Detection in Gear Systems," Energies, MDPI, vol. 14(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Miaorui & Zhang, Kun & Sheng, Zhipeng & Zhang, Xiangfeng & Xu, Yonggang, 2024. "The amplitude modulation bispectrum: A weak modulation features extracting method for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0302814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.