IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0302740.html
   My bibliography  Save this article

Guaranteed minimum withdrawal benefits with high-water mark fee structure

Author

Listed:
  • Yichen Han
  • Lianxia Wu
  • Dongchen Li
  • Jiaqi Han

Abstract

The Guaranteed Minimum Withdrawal Benefit (GMWB), an adjunct incorporated within variable annuities, commits to reimbursing the entire initial investment regardless of the performance of the underlying funds. While extensive research exists in financial and actuarial literature regarding the modeling and valuation techniques of GMWBs, much of it is founded on a static fee structure. Our study introduces an innovative fee structure based on the high-water mark (HWM) principle and a regime-switch jump-diffusion model for the pricing of GMWBs, employing numerical solutions through the Monte Carlo method for solving the stochastic differential equation (SDE). Furthermore, a companion piece of research addresses the risk management of GMWBs within the same analytical framework as the pricing component, an aspect that has received limited attention in the existing literature. In assessing the necessary capital reserves for unforeseen losses, our methodology involves the computation of two risk metrics associated with the tail distribution of net liability from the insurer’s perspective, Value-at-Risk (VaR) and Conditional-Tail-Expectation (CTE). Comprehensive numerical results and sensitivity analyses are also provided.

Suggested Citation

  • Yichen Han & Lianxia Wu & Dongchen Li & Jiaqi Han, 2024. "Guaranteed minimum withdrawal benefits with high-water mark fee structure," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-17, May.
  • Handle: RePEc:plo:pone00:0302740
    DOI: 10.1371/journal.pone.0302740
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302740
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0302740&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0302740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jingjiang Peng & Kwai Sun Leung & Yue Kuen Kwok, 2012. "Pricing guaranteed minimum withdrawal benefits under stochastic interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(6), pages 933-941, October.
    2. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    3. Zhenyu Cui & Runhuan Feng & Anne MacKay, 2017. "Variable Annuities with VIX-Linked Fee Structure under a Heston-Type Stochastic Volatility Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 458-483, July.
    4. Runhuan Feng & Guojun Gan & Ning Zhang, 2022. "Variable annuity pricing, valuation, and risk management: a survey," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2022(10), pages 867-900, November.
    5. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    6. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    7. Carole Bernard & Thorsten Moenig, 2019. "Where Less Is More: Reducing Variable Annuity Fees to Benefit Policyholder and Insurer," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 86(3), pages 761-782, September.
    8. David Landriault & Bin Li & Dongchen Li & Yumin Wang, 2021. "High‐water mark fee structure in variable annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1057-1094, December.
    9. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    10. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Runhuan & Jing, Xiaochen & Ng, Kenneth Tsz Hin, 2025. "Optimal investment-withdrawal strategy for variable annuities under a performance fee structure," Journal of Economic Dynamics and Control, Elsevier, vol. 170(C).
    2. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    3. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    4. Daniel Bauer & Thorsten Moenig, 2023. "Cheaper by the bundle: The interaction of frictions and option exercise in variable annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 459-486, June.
    5. Yang, Yang & Chen, Shaoying & Cui, Zhenyu & Zhang, Zhimin, 2024. "Valuation of guaranteed lifelong withdrawal benefit with the long-term care option," Insurance: Mathematics and Economics, Elsevier, vol. 119(C), pages 179-193.
    6. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    7. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    8. David Landriault & Bin Li & Dongchen Li & Yumin Wang, 2021. "High‐water mark fee structure in variable annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1057-1094, December.
    9. Anne Mackay & Marie-Claude Vachon, 2023. "On an Optimal Stopping Problem with a Discontinuous Reward," Papers 2311.03538, arXiv.org, revised Nov 2023.
    10. Charles Guy Njike Leunga & Donatien Hainaut, 2022. "Valuation of Annuity Guarantees Under a Self-Exciting Switching Jump Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 963-990, June.
    11. Chen, Ze & Feng, Runhuan & Li, Hong & Yang, Tianyu, 2024. "Coping with longevity via hedging: Fair dynamic valuation of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 154-169.
    12. Bacinello, Anna Rita & Maggistro, Rosario & Zoccolan, Ivan, 2024. "Risk-neutral valuation of GLWB riders in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 1-14.
    13. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    14. Michael A. Kouritzin & Anne MacKay, 2017. "VIX-linked fees for GMWBs via Explicit Solution Simulation Methods," Papers 1708.06886, arXiv.org, revised Apr 2018.
    15. Cody B. Hyndman & Menachem Wenger, 2014. "GMWB Riders in a Binomial Framework - Pricing, Hedging, and Diversification of Mortality Risk," Papers 1410.7453, arXiv.org, revised Jul 2016.
    16. Paolo Angelis & Roberto Marchis & Antonio L. Martire & Emilio Russo, 2022. "A flexible lattice framework for valuing options on assets paying discrete dividends and variable annuities embedding GMWB riders," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 415-446, June.
    17. Feng, Runhuan & Jing, Xiaochen, 2017. "Analytical valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 36-48.
    18. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    19. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    20. Kouritzin, Michael A. & MacKay, Anne, 2018. "VIX-linked fees for GMWBs via explicit solution simulation methods," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 1-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0302740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.