IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301975.html
   My bibliography  Save this article

Spatio-temporal characterization of earthquake sequence parameters and forecasting of strong aftershocks in Xinjiang based on the ETAS model

Author

Listed:
  • Ke Li
  • Maofa Wang
  • Huiguo Zhang
  • Xijian Hu

Abstract

In this paper, the Integrated Nested Laplace Algorithm (INLA) is applied to the Epidemic Type Aftershock Sequence (ETAS) model, and the parameters of the ETAS model are obtained for the earthquake sequences active in different regions of Xinjiang. By analyzing the characteristics of the model parameters over time, the changes in each earthquake sequence are studied in more detail. The estimated values of the ETAS model parameters are used as inputs to forecast strong aftershocks in the next period. We find that there are significant differences in the aftershock triggering capacity and aftershock attenuation capacity of earthquake sequences in different seismic regions of Xinjiang. With different cutoff dates set, we observe the characteristics of the earthquake sequence parameters changing with time after the mainshock occurs, and the model parameters of the Ms7.3 earthquake sequence in Hotan region change significantly with time within 15 days after the earthquake. Compared with the MCMC algorithm, the ETAS model fitted with the INLA algorithm can forecast the number of earthquakes in the early period after the occurrence of strong aftershocks more effectively and can forecast the sudden occurrence time of earthquakes more accurately.

Suggested Citation

  • Ke Li & Maofa Wang & Huiguo Zhang & Xijian Hu, 2024. "Spatio-temporal characterization of earthquake sequence parameters and forecasting of strong aftershocks in Xinjiang based on the ETAS model," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-20, May.
  • Handle: RePEc:plo:pone00:0301975
    DOI: 10.1371/journal.pone.0301975
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301975
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301975&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francesco Serafini & Finn Lindgren & Mark Naylor, 2023. "Approximation of Bayesian Hawkes process with inlabru," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    2. Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    2. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Stindl, Tom, 2023. "Forecasting intraday market risk: A marked self-exciting point process with exogenous renewals," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 182-198.
    4. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    5. Wheatley, Spencer & Filimonov, Vladimir & Sornette, Didier, 2016. "The Hawkes process with renewal immigration & its estimation with an EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 120-135.
    6. Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
    7. Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Post-Print hal-01393994, HAL.
    8. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    9. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Exploiting Spillovers to Forecast Crashes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 936-955, December.
    10. Sobin Joseph & Shashi Jain, 2024. "Non-Parametric Estimation of Multi-dimensional Marked Hawkes Processes," Papers 2402.04740, arXiv.org.
    11. Grames, Eliza M. & Stepule, Piper L. & Herrick, Susan Z. & Ranelli, Benjamin T. & Elphick, Chris S., 2022. "Separating acoustic signal into underlying behaviors with self-exciting point process models," Ecological Modelling, Elsevier, vol. 468(C).
    12. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    14. Jing, Bo & Li, Shenghong & Ma, Yong, 2021. "Consistent pricing of VIX options with the Hawkes jump-diffusion model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    15. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    16. Aditya Banerjee & Samit Paul, 2024. "Idiosyncrasies of Intraday Risk in Emerging and Developed Markets: Efficacy of the MCS-GARCH Model and Extreme Value Theory," Global Business Review, International Management Institute, vol. 25(2), pages 468-490, April.
    17. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2024. "Forecasting the effect of extreme sea-level rise on financial market risk," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1-27.
    18. Moreno Trujillo, John Freddy, 2019. "Modelo estocástico para el precio de activos riesgosos utilizando procesos Hawkes [Stochastic model for risky assets price using Hawkes processes]," MPRA Paper 101327, University Library of Munich, Germany.
    19. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    20. Ji, Jingru & Wang, Donghua & Xu, Dinghai, 2019. "Modelling the spreading process of extreme risks via a simple agent-based model: Evidence from the China stock market," Economic Modelling, Elsevier, vol. 80(C), pages 383-391.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.