IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0297307.html
   My bibliography  Save this article

Studying mixed-species biofilms of Candida albicans and Staphylococcus aureus using evolutionary game theory

Author

Listed:
  • Sybille Dühring
  • Stefan Schuster

Abstract

Mixed-species biofilms of Candida albicans and Staphylococcus aureus pose a significant clinical challenge due to their resistance to the human immune system and antimicrobial therapy. Using evolutionary game theory and nonlinear dynamics, we analyse the complex interactions between these organisms to understand their coexistence in the human host. We determine the Nash equilibria and evolutionary stable strategies of the game between C. albicans and S. aureus and point out different states of the mixed-species biofilm. Using replicator equations we study the fungal-bacterial interactions on a population level. Our focus is on the influence of available nutrients and the quorum sensing molecule farnesol, including the potential therapeutic use of artificially added farnesol. We also investigate the impact of the suggested scavenging of C. albicans hyphae by S. aureus. Contrary to common assumptions, we confirm the hypothesis that under certain conditions, mixed-species biofilms are not universally beneficial. Instead, different Nash equilibria occur depending on encountered conditions (i.e. varying farnesol levels, either produced by C. albicans or artificially added), including antagonism. We further show that the suggested scavenging of C. albicans’ hyphae by S. aureus does not influence the overall outcome of the game. Moreover, artificially added farnesol strongly affects the dynamics of the game, although its use as a medical adjuvant (add-on medication) may pose challenges.

Suggested Citation

  • Sybille Dühring & Stefan Schuster, 2024. "Studying mixed-species biofilms of Candida albicans and Staphylococcus aureus using evolutionary game theory," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-22, March.
  • Handle: RePEc:plo:pone00:0297307
    DOI: 10.1371/journal.pone.0297307
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297307
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297307&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0297307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason Lloyd-Price & Anup Mahurkar & Gholamali Rahnavard & Jonathan Crabtree & Joshua Orvis & A. Brantley Hall & Arthur Brady & Heather H. Creasy & Carrie McCracken & Michelle G. Giglio & Daniel McDona, 2017. "Strains, functions and dynamics in the expanded Human Microbiome Project," Nature, Nature, vol. 550(7674), pages 61-66, October.
    2. Jason Lloyd-Price & Anup Mahurkar & Gholamali Rahnavard & Jonathan Crabtree & Joshua Orvis & A. Brantley Hall & Arthur Brady & Heather H. Creasy & Carrie McCracken & Michelle G. Giglio & Daniel McDona, 2017. "Erratum: Strains, functions and dynamics in the expanded Human Microbiome Project," Nature, Nature, vol. 551(7679), pages 256-256, November.
    3. Andrew M Colman & Eva M Krockow & Edmund Chattoe-Brown & Carolyn Tarrant, 2019. "Medical prescribing and antibiotic resistance: A game-theoretic analysis of a potentially catastrophic social dilemma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minghui Cheng & Yingjie Xu & Xiao Cui & Xin Wei & Yundi Chang & Jun Xu & Cheng Lei & Lei Xue & Yifan Zheng & Zhang Wang & Lingtong Huang & Min Zheng & Hong Luo & Yuxin Leng & Chao Jiang, 2024. "Deep longitudinal lower respiratory tract microbiome profiling reveals genome-resolved functional and evolutionary dynamics in critical illness," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    3. Louis J. Cohen & Sun M. Han & Pearson Lau & Daniela Guisado & Yupu Liang & Toshiki G. Nakashige & Thamina Ali & David Chiang & Adeeb Rahman & Sean F. Brady, 2022. "Unraveling function and diversity of bacterial lectins in the human microbiome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yuanlin Wang & Yaqian Han & Chenhui Yang & Tiancheng Bai & Chenggang Zhang & Zhaotong Wang & Ye Sun & Ying Hu & Flemming Besenbacher & Chunying Chen & Miao Yu, 2024. "Long-term relapse-free survival enabled by integrating targeted antibacteria in antitumor treatment," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Benjamin H. Good & Layton B. Rosenfeld, 2023. "Eco-evolutionary feedbacks in the human gut microbiome," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Guilherme Fahur Bottino & Kevin S. Bonham & Fadheela Patel & Shelley McCann & Michal Zieff & Nathalia Naspolini & Daniel Ho & Theo Portlock & Raphaela Joos & Firas S. Midani & Paulo Schüroff & Anubhav, 2025. "Early life microbial succession in the gut follows common patterns in humans across the globe," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Patrick A. Jonge & Koen Wortelboer & Torsten P. M. Scheithauer & Bert-Jan H. Born & Aeilko H. Zwinderman & Franklin L. Nobrega & Bas E. Dutilh & Max Nieuwdorp & Hilde Herrema, 2022. "Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Ying Liao & Yan-Xia Wu & Minzhong Tang & Yi-Wei Chen & Jin-Ru Xie & Yan Du & Tong-Min Wang & Yong-Qiao He & Wen-Qiong Xue & Xiao-Hui Zheng & Qiao-Yun Liu & Mei-Qi Zheng & Yi-Jing Jia & Xia-Ting Tong &, 2024. "Microbes translocation from oral cavity to nasopharyngeal carcinoma in patients," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Yolanda Y. Huang & Morgan N. Price & Allison Hung & Omree Gal-Oz & Surya Tripathi & Christopher W. Smith & Davian Ho & Héloïse Carion & Adam M. Deutschbauer & Adam P. Arkin, 2024. "Barcoded overexpression screens in gut Bacteroidales identify genes with roles in carbon utilization and stress resistance," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Soo Hwan Byun & Sunki Lee & Sung Hun Kang & Hyo Geun Choi & Seok Jin Hong, 2020. "Cross-Sectional Analysis of the Association between Periodontitis and Cardiovascular Disease Using the Korean Genome and Epidemiology Study Data," IJERPH, MDPI, vol. 17(14), pages 1-12, July.
    11. Ann-Sophie Rüttiger & Daniel Ryan & Luisella Spiga & Vanessa Lamm-Schmidt & Gianluca Prezza & Sarah Reichardt & Madison Langford & Lars Barquist & Franziska Faber & Wenhan Zhu & Alexander J. Westerman, 2025. "The global RNA-binding protein RbpB is a regulator of polysaccharide utilization in Bacteroides thetaiotaomicron," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    12. Sang Chul Park & Il-Ho Park & Joong Seob Lee & Sung Min Park & Sung Hun Kang & Seok-Min Hong & Soo-Hwan Byun & Yong Gi Jung & Seok Jin Hong, 2021. "Microbiome of Unilateral Chronic Rhinosinusitis: A Controlled Paired Analysis," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    13. Doris Vandeputte & Lindsey Commer & Raul Y. Tito & Gunter Kathagen & João Sabino & Séverine Vermeire & Karoline Faust & Jeroen Raes, 2021. "Temporal variability in quantitative human gut microbiome profiles and implications for clinical research," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    14. Guo, Yiting & Wei, Lijia & Xue, Lian, 2024. "Intergenerational preference transmission in physician families during the pandemic: Theory and evidence," China Economic Review, Elsevier, vol. 88(C).
    15. Niklas Harring & Eva M. Krockow, 2021. "The social dilemmas of climate change and antibiotic resistance: an analytic comparison and discussion of policy implications," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    16. Jing Ma, 2021. "Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 351-372, July.
    17. Lu Gram & Rolando Granados & Eva M. Krockow & Nayreen Daruwalla & David Osrin, 2021. "Modelling collective action to change social norms around domestic violence: social dilemmas and the role of altruism," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0297307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.