IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295640.html
   My bibliography  Save this article

Human arm endpoint-impedance in rhythmic human-robot interaction exhibits cyclic variations

Author

Listed:
  • Vincent Fortineau
  • Isabelle A Siegler
  • Maria Makarov
  • Pedro Rodriguez-Ayerbe

Abstract

Estimating the human endpoint-impedance interacting with a physical environment provides insights into goal-directed human movements during physical interactions. This work examined the endpoint-impedance of the upper limb during a hybrid ball-bouncing task with simulated haptic feedback while participants manipulated an admittance-controlled robot. Two experiments implemented a force-perturbation method to estimate the endpoint parameters of 31 participants. Experimental conditions of the ball-bouncing task were simulated in a digital environment. One experiment studied the influence of the target height, while the other explored the impedance at three cyclic phases of the rhythmic movement induced by the task. The participants’ performances were analyzed and clustered to establish a potential influence of endpoint impedance on performance in the ball-bouncing task. Results showed that endpoint-impedance parameters ranged from 45 to 445 N/m, 2.2 to 17.5 Ns/m, and 227 to 893 g for the stiffness, damping, and mass, respectively. Results did not support such a critical role of endpoint impedance in performance. Nevertheless, the three endpoint-impedance parameters described significant variations throughout the arm cycle. The stiffness is linked to a quasi-linear increase, with a maximum value reached before the ball impacts. The observed damping and mass cyclic variations seemed to be caused by geometric and kinematic variations. Although this study reveals rapid and within-cycles variations of endpoint-impedance parameters, no direct relationship between endpoint-impedance values and performance levels in ball-bouncing could be found.

Suggested Citation

  • Vincent Fortineau & Isabelle A Siegler & Maria Makarov & Pedro Rodriguez-Ayerbe, 2023. "Human arm endpoint-impedance in rhythmic human-robot interaction exhibits cyclic variations," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0295640
    DOI: 10.1371/journal.pone.0295640
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295640
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295640&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Etienne Burdet & Rieko Osu & David W. Franklin & Theodore E. Milner & Mitsuo Kawato, 2001. "The central nervous system stabilizes unstable dynamics by learning optimal impedance," Nature, Nature, vol. 414(6862), pages 446-449, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    2. Jack Brookes & Faisal Mushtaq & Earle Jamieson & Aaron J Fath & Geoffrey Bingham & Peter Culmer & Richard M Wilkie & Mark Mon-Williams, 2020. "Exploring disturbance as a force for good in motor learning," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-21, May.
    3. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    4. repec:plo:pone00:0013601 is not listed on IDEAS
    5. Tom Van Wouwe & Lena H Ting & Friedl De Groote, 2022. "An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-30, June.
    6. Bastien Berret & Frédéric Jean, 2020. "Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-28, February.
    7. Nathanaël Jarrassé & Themistoklis Charalambous & Etienne Burdet, 2012. "A Framework to Describe, Analyze and Generate Interactive Motor Behaviors," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    8. Bastien Berret & Adrien Conessa & Nicolas Schweighofer & Etienne Burdet, 2021. "Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-24, June.
    9. repec:plo:pone00:0099087 is not listed on IDEAS
    10. Aldo Faisal & Dietrich Stout & Jan Apel & Bruce Bradley, 2010. "The Manipulative Complexity of Lower Paleolithic Stone Toolmaking," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-11, November.
    11. Frédéric Crevecoeur & Stephen H Scott, 2013. "Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-14, August.
    12. repec:plo:pone00:0030301 is not listed on IDEAS
    13. J Lucas McKay & Lena H Ting, 2012. "Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-17, April.
    14. Yuejun Xu & Jian Wen & Etienne Burdet & Majid Taghavi, 2025. "Monolithic electrostatic actuators with independent stiffness modulation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Abdelhamid Kadiallah & David W Franklin & Etienne Burdet, 2012. "Generalization in Adaptation to Stable and Unstable Dynamics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.