IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0224055.html
   My bibliography  Save this article

Exploring disturbance as a force for good in motor learning

Author

Listed:
  • Jack Brookes
  • Faisal Mushtaq
  • Earle Jamieson
  • Aaron J Fath
  • Geoffrey Bingham
  • Peter Culmer
  • Richard M Wilkie
  • Mark Mon-Williams

Abstract

Disturbance forces facilitate motor learning, but theoretical explanations for this counterintuitive phenomenon are lacking. Smooth arm movements require predictions (inference) about the force-field associated with a workspace. The Free Energy Principle (FEP) suggests that such ‘active inference’ is driven by ‘surprise’. We used these insights to create a formal model that explains why disturbance might help learning. In two experiments, participants undertook a continuous tracking task where they learned how to move their arm in different directions through a novel 3D force field. We compared baseline performance before and after exposure to the novel field to quantify learning. In Experiment 1, the exposure phases (but not the baseline measures) were delivered under three different conditions: (i) robot haptic assistance; (ii) no guidance; (iii) robot haptic disturbance. The disturbance group showed the best learning as our model predicted. Experiment 2 further tested our FEP inspired model. Assistive and/or disturbance forces were applied as a function of performance (low surprise), and compared to a random error manipulation (high surprise). The random group showed the most improvement as predicted by the model. Thus, motor learning can be conceptualised as a process of entropy reduction. Short term motor strategies (e.g. global impedance) can mitigate unexpected perturbations, but continuous movements require active inference about external force-fields in order to create accurate internal models of the external world (motor learning). Our findings reconcile research on the relationship between noise, variability, and motor learning, and show that information is the currency of motor learning.

Suggested Citation

  • Jack Brookes & Faisal Mushtaq & Earle Jamieson & Aaron J Fath & Geoffrey Bingham & Peter Culmer & Richard M Wilkie & Mark Mon-Williams, 2020. "Exploring disturbance as a force for good in motor learning," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-21, May.
  • Handle: RePEc:plo:pone00:0224055
    DOI: 10.1371/journal.pone.0224055
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224055
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0224055&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0224055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edward J A Turnham & Daniel A Braun & Daniel M Wolpert, 2011. "Inferring Visuomotor Priors for Sensorimotor Learning," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    2. Etienne Burdet & Rieko Osu & David W. Franklin & Theodore E. Milner & Mitsuo Kawato, 2001. "The central nervous system stabilizes unstable dynamics by learning optimal impedance," Nature, Nature, vol. 414(6862), pages 446-449, November.
    3. Christopher J Hasson & Zhaoran Zhang & Masaki O Abe & Dagmar Sternad, 2016. "Neuromotor Noise Is Malleable by Amplifying Perceived Errors," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    2. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    3. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    4. Bastien Berret & Frédéric Jean, 2020. "Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-28, February.
    5. Nathanaël Jarrassé & Themistoklis Charalambous & Etienne Burdet, 2012. "A Framework to Describe, Analyze and Generate Interactive Motor Behaviors," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    6. Wolfgang I. Schöllhorn & Nikolas Rizzi & Agnė Slapšinskaitė-Dackevičienė & Nuno Leite, 2022. "Always Pay Attention to Which Model of Motor Learning You Are Using," IJERPH, MDPI, vol. 19(2), pages 1-36, January.
    7. Bastien Berret & Adrien Conessa & Nicolas Schweighofer & Etienne Burdet, 2021. "Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-24, June.
    8. Aldo Faisal & Dietrich Stout & Jan Apel & Bruce Bradley, 2010. "The Manipulative Complexity of Lower Paleolithic Stone Toolmaking," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-11, November.
    9. Frédéric Crevecoeur & Stephen H Scott, 2013. "Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-14, August.
    10. J Lucas McKay & Lena H Ting, 2012. "Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-17, April.
    11. Abdelhamid Kadiallah & David W Franklin & Etienne Burdet, 2012. "Generalization in Adaptation to Stable and Unstable Dynamics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    12. Jordi Grau-Moya & Pedro A Ortega & Daniel A Braun, 2012. "Risk-Sensitivity in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-7, September.
    13. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0224055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.