IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0294289.html
   My bibliography  Save this article

Deep learning in public health: Comparative predictive models for COVID-19 case forecasting

Author

Listed:
  • Muhammad Usman Tariq
  • Shuhaida Binti Ismail

Abstract

The COVID-19 pandemic has had a significant impact on both the United Arab Emirates (UAE) and Malaysia, emphasizing the importance of developing accurate and reliable forecasting mechanisms to guide public health responses and policies. In this study, we compared several cutting-edge deep learning models, including Long Short-Term Memory (LSTM), bidirectional LSTM, Convolutional Neural Networks (CNN), hybrid CNN-LSTM, Multilayer Perceptron’s, and Recurrent Neural Networks (RNN), to project COVID-19 cases in the aforementioned regions. These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. Subsequently, the models were re-evaluated to compare their effectiveness. Analytic approaches, both predictive and retrospective in nature, were used to interpret the data. Our primary objective was to determine the most effective model for predicting COVID-19 cases in the United Arab Emirates (UAE) and Malaysia. The findings indicate that the selected deep learning algorithms were proficient in forecasting COVID-19 cases, although their efficacy varied across different models. After a thorough evaluation, the model architectures most suitable for the specific conditions in the UAE and Malaysia were identified. Our study contributes significantly to the ongoing efforts to combat the COVID-19 pandemic, providing crucial insights into the application of sophisticated deep learning algorithms for the precise and timely forecasting of COVID-19 cases. These insights hold substantial value for shaping public health strategies, enabling authorities to develop targeted and evidence-based interventions to manage the virus spread and its impact on the populations of the UAE and Malaysia. The study confirms the usefulness of deep learning methodologies in efficiently processing complex datasets and generating reliable projections, a skill of great importance in healthcare and professional settings.

Suggested Citation

  • Muhammad Usman Tariq & Shuhaida Binti Ismail, 2024. "Deep learning in public health: Comparative predictive models for COVID-19 case forecasting," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-41, March.
  • Handle: RePEc:plo:pone00:0294289
    DOI: 10.1371/journal.pone.0294289
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294289
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0294289&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0294289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Wang & Wuyue An & Feng‐Ting Li, 2024. "Text‐based corn futures price forecasting using improved neural basis expansion network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2042-2063, September.
    2. Carlos J. Delgado & Estefanía Alfaro-Mejía & Vidya Manian & Efrain O’Neill-Carrillo & Fabio Andrade, 2024. "Photovoltaic Power Generation Forecasting with Hidden Markov Model and Long Short-Term Memory in MISO and SISO Configurations," Energies, MDPI, vol. 17(3), pages 1-18, January.
    3. Li, Jieyi & Qian, Shuangyue & Li, Ling & Guo, Yuanxuan & Wu, Jun & Tang, Ling, 2024. "A novel secondary decomposition method for forecasting crude oil price with twitter sentiment," Energy, Elsevier, vol. 290(C).
    4. Mo, Jixian & Gao, Ruobin & Fai Yuen, Kum & Bai, Xiwen, 2024. "Predictive analysis of sell-and-purchase shipping market: A PIMSE approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    5. Seok Jin Youn & Yong-Jae Lee & Ha-Eun Han & Chang-Woo Lee & Donggyun Sohn & Chulung Lee, 2024. "A Data Analytics and Machine Learning Approach to Develop a Technology Roadmap for Next-Generation Logistics Utilizing Underground Systems," Sustainability, MDPI, vol. 16(15), pages 1-32, August.
    6. Muhammad Usman Tariq & Shuhaida Binti Ismail & Muhammad Babar & Ashir Ahmad, 2023. "Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0294289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.