IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0294148.html
   My bibliography  Save this article

Prognostic risk models for incident hypertension: A PRISMA systematic review and meta-analysis

Author

Listed:
  • Filip Emil Schjerven
  • Frank Lindseth
  • Ingelin Steinsland

Abstract

Objective: Our goal was to review the available literature on prognostic risk prediction for incident hypertension, synthesize performance, and provide suggestions for future work on the topic. Methods: A systematic search on PUBMED and Web of Science databases was conducted for studies on prognostic risk prediction models for incident hypertension in generally healthy individuals. Study-quality was assessed using the Prediction model Risk of Bias Assessment Tool (PROBAST) checklist. Three-level meta-analyses were used to obtain pooled AUC/C-statistic estimates. Heterogeneity was explored using study and cohort characteristics in meta-regressions. Results: From 5090 hits, we found 53 eligible studies, and included 47 in meta-analyses. Only four studies were assessed to have results with low risk of bias. Few models had been externally validated, with only the Framingham risk model validated more than thrice. Conclusion: Overall, the quality of included studies was assessed as poor. AUC/C-statistic were mostly acceptable or good, and higher for ML models than traditional models. High heterogeneity implies large variability in the performance of new risk models. Further, large heterogeneity in validations of the Framingham risk model indicate variability in model performance on new populations.

Suggested Citation

  • Filip Emil Schjerven & Frank Lindseth & Ingelin Steinsland, 2024. "Prognostic risk models for incident hypertension: A PRISMA systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-29, March.
  • Handle: RePEc:plo:pone00:0294148
    DOI: 10.1371/journal.pone.0294148
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0294148
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0294148&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0294148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Vickers & Elena B. Elkin, 2006. "Decision Curve Analysis: A Novel Method for Evaluating Prediction Models," Medical Decision Making, , vol. 26(6), pages 565-574, November.
    2. Justin B Echouffo-Tcheugui & G David Batty & Mika Kivimäki & Andre P Kengne, 2013. "Risk Models to Predict Hypertension: A Systematic Review," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    3. repec:plo:pone00:0195344 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    4. Jing Sun & Yue Liu & Jianhui Zhao & Bin Lu & Siyun Zhou & Wei Lu & Jingsun Wei & Yeting Hu & Xiangxing Kong & Junshun Gao & Hong Guan & Junli Gao & Qian Xiao & Xue Li, 2024. "Plasma proteomic and polygenic profiling improve risk stratification and personalized screening for colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.
    6. Khushal Arjan & Lui G Forni & Richard M Venn & David Hunt & Luke Eliot Hodgson, 2021. "Clinical decision-making in older adults following emergency admission to hospital. Derivation and validation of a risk stratification score: OPERA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-12, March.
    7. Christian Bock & Joan Elias Walter & Bastian Rieck & Ivo Strebel & Klara Rumora & Ibrahim Schaefer & Michael J. Zellweger & Karsten Borgwardt & Christian Müller, 2024. "Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Tracey L. Marsh & Holly Janes & Margaret S. Pepe, 2020. "Statistical inference for net benefit measures in biomarker validation studies," Biometrics, The International Biometric Society, vol. 76(3), pages 843-852, September.
    9. Chang Wook Jeong & Sangchul Lee & Jin-Woo Jung & Byung Ki Lee & Seong Jin Jeong & Sung Kyu Hong & Seok-Soo Byun & Sang Eun Lee, 2014. "Mobile Application-Based Seoul National University Prostate Cancer Risk Calculator: Development, Validation, and Comparative Analysis with Two Western Risk Calculators in Korean Men," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    10. Xin Luo & Jijia Sun & Hong Pan & Dian Zhou & Ping Huang & Jingjing Tang & Rong Shi & Hong Ye & Ying Zhao & An Zhang, 2023. "Establishment and health management application of a prediction model for high-risk complication combination of type 2 diabetes mellitus based on data mining," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-18, August.
    11. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    12. Michael Lebenbaum & Osvaldo Espin-Garcia & Yi Li & Laura C Rosella, 2018. "Development and validation of a population based risk algorithm for obesity: The Obesity Population Risk Tool (OPoRT)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.
    13. Tae Yoon Lee & Paul Gustafson & Mohsen Sadatsafavi, 2023. "Closed-Form Solution of the Unit Normal Loss Integral in 2 Dimensions, with Application in Value-of-Information Analysis," Medical Decision Making, , vol. 43(5), pages 621-626, July.
    14. Baker Stuart G. & Van Calster Ben & Steyerberg Ewout W., 2012. "Evaluating a New Marker for Risk Prediction Using the Test Tradeoff: An Update," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-37, March.
    15. Kevin Sandeman & Juho T Eineluoto & Joona Pohjonen & Andrew Erickson & Tuomas P Kilpeläinen & Petrus Järvinen & Henrikki Santti & Anssi Petas & Mika Matikainen & Suvi Marjasuo & Anu Kenttämies & Tuoma, 2020. "Prostate MRI added to CAPRA, MSKCC and Partin cancer nomograms significantly enhances the prediction of adverse findings and biochemical recurrence after radical prostatectomy," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    16. R. M. Pfeiffer & M. H. Gail, 2011. "Two Criteria for Evaluating Risk Prediction Models," Biometrics, The International Biometric Society, vol. 67(3), pages 1057-1065, September.
    17. Danny J N Wong & Steve Harris & Arun Sahni & James R Bedford & Laura Cortes & Richard Shawyer & Andrew M Wilson & Helen A Lindsay & Doug Campbell & Scott Popham & Lisa M Barneto & Paul S Myles & SNAP-, 2020. "Developing and validating subjective and objective risk-assessment measures for predicting mortality after major surgery: An international prospective cohort study," PLOS Medicine, Public Library of Science, vol. 17(10), pages 1-22, October.
    18. Fergus Imrie & Bogdan Cebere & Eoin F McKinney & Mihaela van der Schaar, 2023. "AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning," PLOS Digital Health, Public Library of Science, vol. 2(6), pages 1-21, June.
    19. François Luthi & Olivier Deriaz & Philippe Vuistiner & Cyrille Burrus & Roger Hilfiker, 2014. "Predicting Non Return to Work after Orthopaedic Trauma: The Wallis Occupational Rehabilitation RisK (WORRK) Model," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    20. Capponi, Giovanna & Martinelli, Arianna & Nuvolari, Alessandro, 2022. "Breakthrough innovations and where to find them," Research Policy, Elsevier, vol. 51(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0294148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.