IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0292814.html
   My bibliography  Save this article

Implementing circularity measurements in industry 4.0-based manufacturing metrology using MQTT protocol and Open CV: A case study

Author

Listed:
  • Yazid Saif
  • Yusri Yusof
  • Anika Zafiah M Rus
  • Atef M Ghaleb
  • Sobhi Mejjaouli
  • Sami Al-Alimi
  • Djamal Hissein Didane
  • Kamran Latif
  • Aini Zuhra Abdul Kadir
  • Hamood Alshalabi
  • Safwan Sadeq

Abstract

In the context of Industry 4.0, manufacturing metrology is crucial for inspecting and measuring machines. The Internet of Things (IoT) technology enables seamless communication between advanced industrial devices through local and cloud computing servers. This study investigates the use of the MQTT protocol to enhance the performance of circularity measurement data transmission between cloud servers and round-hole data sources through Open CV. Accurate inspection of circular characteristics, particularly roundness errors, is vital for lubricant distribution, assemblies, and rotational force innovation. Circularity measurement techniques employ algorithms like the minimal zone circle tolerance algorithm. Vision inspection systems, utilizing image processing techniques, can promptly and accurately detect quality concerns by analyzing the model’s surface through circular dimension analysis. This involves sending the model’s image to a computer, which employs techniques such as Hough Transform, Edge Detection, and Contour Analysis to identify circular features and extract relevant parameters. This method is utilized in the camera industry and component assembly. To assess the performance, a comparative experiment was conducted between the non-contact-based 3SMVI system and the contact-based CMM system widely used in various industries for roundness evaluation. The CMM technique is known for its high precision but is time-consuming. Experimental results indicated a variation of 5 to 9.6 micrometers between the two methods. It is suggested that using a high-resolution camera and appropriate lighting conditions can further enhance result precision.

Suggested Citation

  • Yazid Saif & Yusri Yusof & Anika Zafiah M Rus & Atef M Ghaleb & Sobhi Mejjaouli & Sami Al-Alimi & Djamal Hissein Didane & Kamran Latif & Aini Zuhra Abdul Kadir & Hamood Alshalabi & Safwan Sadeq, 2023. "Implementing circularity measurements in industry 4.0-based manufacturing metrology using MQTT protocol and Open CV: A case study," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-25, October.
  • Handle: RePEc:plo:pone00:0292814
    DOI: 10.1371/journal.pone.0292814
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292814
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0292814&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0292814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francisco G. Bulnes & Ruben Usamentiaga & Daniel F. Garcia & J. Molleda, 2016. "An efficient method for defect detection during the manufacturing of web materials," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 431-445, April.
    2. Durga Prasad Penumuru & Sreekumar Muthuswamy & Premkumar Karumbu, 2020. "Identification and classification of materials using machine vision and machine learning in the context of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1229-1241, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiyong Chen & Yue Pang & Qidi Hu & Kun Liu, 2020. "Solar cell surface defect inspection based on multispectral convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 453-468, February.
    2. Emmanuel Ekene Okere & Ebrahiema Arendse & Alemayehu Ambaw Tsige & Willem Jacobus Perold & Umezuruike Linus Opara, 2022. "Pomegranate Quality Evaluation Using Non-Destructive Approaches: A Review," Agriculture, MDPI, vol. 12(12), pages 1-25, November.
    3. Yun Peng & Shenyi Zhao & Jizhan Liu, 2021. "Fused Deep Features-Based Grape Varieties Identification Using Support Vector Machine," Agriculture, MDPI, vol. 11(9), pages 1-16, September.
    4. George Lãzãroiu & Armenia Androniceanu & Iulia Grecu & Gheorghe Grecu & Octav Neguri?ã, 2022. "Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1047-1080, December.
    5. Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
    6. Tae San Kim & Jong Wook Lee & Won Kyung Lee & So Young Sohn, 2022. "Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1715-1724, August.
    7. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    8. Yi Zhang & Peng Peng & Chongdang Liu & Yanyan Xu & Heming Zhang, 2022. "A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1057-1072, April.
    9. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    10. Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
    11. Jorge L. Alonso-Perez & Selene L. Cardenas-Maciel & Balter Trujillo-Navarrete & Edgar A. Reynoso-Soto & Nohe R. Cazarez-Cazarez, 2022. "An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2307-2320, December.
    12. Mohamed Ben Gharsallah & Ezzedine Ben Braiek, 2021. "Computer aided manufacturing method for surface silicon steel inspection based on an efficient anisotropic diffusion algorithm," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1025-1041, April.
    13. Penglei Dai & Mahdi Hassan & Xuerong Sun & Ming Zhang & Zhengwei Bian & Dikai Liu, 2022. "A framework for multi-robot coverage analysis of large and complex structures," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1545-1560, June.
    14. Michael D. T. McDonnell & Daniel Arnaldo & Etienne Pelletier & James A. Grant-Jacob & Matthew Praeger & Dimitris Karnakis & Robert W. Eason & Ben Mills, 2021. "Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1471-1483, June.
    15. Sinan Uguz & Osman Ipek, 2022. "Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1393-1417, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.