IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0292600.html
   My bibliography  Save this article

A simplified network topology for fruit detection, counting and mobile-phone deployment

Author

Listed:
  • Olarewaju Mubashiru Lawal
  • Shengyan Zhu
  • Kui Cheng
  • Chuanli Liu

Abstract

The complex network topology, deployment unfriendliness, computation cost, and large parameters, including the natural changeable environment are challenges faced by fruit detection. Thus, a Simplified network topology for fruit detection, tracking and counting was designed to solve these problems. The network used common networks of Conv, Maxpool, feature concatenation and SPPF as new backbone and a modified decoupled head of YOLOv8 as head network. At the same time, it was validated on a dataset of images encompassing strawberry, jujube, and cherry fruits. Having compared to YOLO-mainstream variants, the params of Simplified network is 32.6%, 127%, and 50.0% lower than YOLOv5n, YOLOv7-tiny, and YOLOv8n, respectively. The results of mAP@50% tested using test-set show that the 82.4% of Simplified network is 0.4%, -0.2%, and 0.2% respectively more accurate than 82.0% of YOLOv5n, 82.6% of YOLOv7-tiny, and 82.2% of YOLOv8n. Furthermore, the Simplified network is 12.8%, 17.8%, and 11.8% respectively faster than YOLOv5n, YOLOv7-tiny, and YOLOv8n, including outperforming in tracking, counting, and mobile-phone deployment process. Hence, the Simplified network is robust, fast, accurate, easy-to-understand, fewer in parameters and deployable friendly.

Suggested Citation

  • Olarewaju Mubashiru Lawal & Shengyan Zhu & Kui Cheng & Chuanli Liu, 2023. "A simplified network topology for fruit detection, counting and mobile-phone deployment," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-15, October.
  • Handle: RePEc:plo:pone00:0292600
    DOI: 10.1371/journal.pone.0292600
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292600
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0292600&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0292600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yichen Qiao & Yaohua Hu & Zhouzhou Zheng & Huanbo Yang & Kaili Zhang & Juncai Hou & Jiapan Guo, 2022. "A Counting Method of Red Jujube Based on Improved YOLOv5s," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    2. Peichao Cong & Hao Feng & Kunfeng Lv & Jiachao Zhou & Shanda Li, 2023. "MYOLO: A Lightweight Fresh Shiitake Mushroom Detection Model Based on YOLOv3," Agriculture, MDPI, vol. 13(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim Bolshev & Vladimir Panchenko & Alexey Sibirev, 2023. "Engineering Innovations in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-4, June.
    2. Jinkai Guo & Xiao Xiao & Jianchi Miao & Bingquan Tian & Jing Zhao & Yubin Lan, 2023. "Design and Experiment of a Visual Detection System for Zanthoxylum-Harvesting Robot Based on Improved YOLOv5 Model," Agriculture, MDPI, vol. 13(4), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.