A Bayesian model for predicting monthly fire frequency in Kenya
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0291800
Download full text from publisher
References listed on IDEAS
- Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Xian, Alan, 2021. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," European Journal of Operational Research, Elsevier, vol. 290(1), pages 177-195.
- Dingli Liu & Zhisheng Xu & Chuangang Fan, 2019. "Predictive analysis of fire frequency based on daily temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1175-1189, July.
- Qi Tong & Thomas Gernay, 2022. "A hierarchical Bayesian model for predicting fire ignitions after an earthquake with application to California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1637-1660, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sen, Ankita & Selvaraju, N., 2023. "Diffusion approximation of an infinite-server queue under Markovian environment with rapid switching," Statistics & Probability Letters, Elsevier, vol. 195(C).
- Glenda Mascheri & Nicola Chieffo & Nicola Tondini & Cláudia Pinto & Paulo B. Lourenço, 2024. "Assessing the Cascading Post-Earthquake Fire-Risk Scenario in Urban Centres," Sustainability, MDPI, vol. 16(20), pages 1-21, October.
- Hatice Oncel Cekim & Coşkun Okan Güney & Özdemir Şentürk & Gamze Özel & Kürşad Özkan, 2021. "A novel approach for predicting burned forest area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2187-2201, January.
- Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
- Tomasz Ingram & Monika Wieczorek-Kosmala & Karel Hlaváček, 2023. "Organizational Resilience as a Response to the Energy Crisis: Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291800. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.