IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0289429.html
   My bibliography  Save this article

Prehospital prediction of hospital admission for emergent acuity patients transported by paramedics: A population-based cohort study using machine learning

Author

Listed:
  • Ryan P Strum
  • Fabrice I Mowbray
  • Manaf Zargoush
  • Aaron P Jones

Abstract

Introduction: The closest emergency department (ED) may not always be the optimal hospital for certain stable high acuity patients if further distanced ED’s can provide specialized care or are less overcrowded. Machine learning (ML) predictions may support paramedic decision-making to transport a subgroup of emergent patients to a more suitable, albeit more distanced, ED if hospital admission is unlikely. We examined whether characteristics known to paramedics in the prehospital setting were predictive of hospital admission in emergent acuity patients. Materials and methods: We conducted a population-level cohort study using four ML algorithms to analyze ED visits of the National Ambulatory Care Reporting System from January 1, 2018 to December 31, 2019 in Ontario, Canada. We included all adult patients (≥18 years) transported to the ED by paramedics with an emergent Canadian Triage Acuity Scale score. We included eight characteristic classes as model predictors that are recorded at ED triage. All ML algorithms were trained and assessed using 10-fold cross-validation to predict hospital admission from the ED. Predictive model performance was determined using the area under curve (AUC) with 95% confidence intervals and probabilistic accuracy using the Brier Scaled score. Variable importance scores were computed to determine the top 10 predictors of hospital admission. Results: All machine learning algorithms demonstrated acceptable accuracy in predicting hospital admission (AUC 0.77–0.78, Brier Scaled 0.22–0.24). The characteristics most predictive of admission were age between 65 to 105 years, referral source from a residential care facility, presenting with a respiratory complaint, and receiving home care. Discussion: Hospital admission was accurately predicted based on patient characteristics known prehospital to paramedics prior to arrival. Our results support consideration of policy modification to permit certain emergent acuity patients to be transported to a further distanced ED. Additionally, this study demonstrates the utility of ML in paramedic and prehospital research.

Suggested Citation

  • Ryan P Strum & Fabrice I Mowbray & Manaf Zargoush & Aaron P Jones, 2023. "Prehospital prediction of hospital admission for emergent acuity patients transported by paramedics: A population-based cohort study using machine learning," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0289429
    DOI: 10.1371/journal.pone.0289429
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289429
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0289429&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0289429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fatemeh Rahimian & Gholamreza Salimi-Khorshidi & Amir H Payberah & Jenny Tran & Roberto Ayala Solares & Francesca Raimondi & Milad Nazarzadeh & Dexter Canoy & Kazem Rahimi, 2018. "Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-18, November.
    2. Woo Suk Hong & Adrian Daniel Haimovich & R Andrew Taylor, 2018. "Predicting hospital admission at emergency department triage using machine learning," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsen Askar & Masoud Tafavvoghi & Lars Småbrekke & Lars Ailo Bongo & Kristian Svendsen, 2024. "Using machine learning methods to predict all-cause somatic hospitalizations in adults: A systematic review," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-21, August.
    2. N Salet & A Gökdemir & J Preijde & C H van Heck & F Eijkenaar, 2024. "Using machine learning to predict acute myocardial infarction and ischemic heart disease in primary care cardiovascular patients," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-17, July.
    3. Hyeram Seo & Imjin Ahn & Hansle Gwon & Hee Jun Kang & Yunha Kim & Ha Na Cho & Heejung Choi & Minkyoung Kim & Jiye Han & Gaeun Kee & Seohyun Park & Dong-Woo Seo & Tae Joon Jun & Young-Hak Kim, 2024. "Prediction of hospitalization and waiting time within 24 hours of emergency department patients with unstructured text data," Health Care Management Science, Springer, vol. 27(1), pages 114-129, March.
    4. Emilien Arnaud & Mahmoud Elbattah & Christine Ammirati & Gilles Dequen & Daniel Aiham Ghazali, 2022. "Use of Artificial Intelligence to Manage Patient Flow in Emergency Department during the COVID-19 Pandemic: A Prospective, Single-Center Study," IJERPH, MDPI, vol. 19(15), pages 1-13, August.
    5. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    6. Mike Jones & George Collier & David J. Reinkensmeyer & Frank DeRuyter & John Dzivak & Daniel Zondervan & John Morris, 2020. "Big Data Analytics and Sensor-Enhanced Activity Management to Improve Effectiveness and Efficiency of Outpatient Medical Rehabilitation," IJERPH, MDPI, vol. 17(3), pages 1-13, January.
    7. Douglas Spangler & Thomas Hermansson & David Smekal & Hans Blomberg, 2019. "A validation of machine learning-based risk scores in the prehospital setting," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0289429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.