IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0287605.html
   My bibliography  Save this article

Three-dimensional nonlinear model of rock creep under freeze–thaw cycles

Author

Listed:
  • Yanting Wang
  • Dong Wang
  • Guanghe Li
  • Laigui Wang
  • Chun Zhu
  • Yongzhi Du
  • Zhiwei Zhou

Abstract

In areas with large differences between day and night temperature, the freeze–thaw cycle and frost heaving force in rock mass generate cracks within the rock, which seriously threatens the stability and safety of geotechnical engineering structures and surrounding buildings. This problem can be solved by developing a reasonable model that accurately represents the rock creep behavior. In this study, we developed a nonlinear viscoelastic–plastic creep damage model by introducing material parameters and a damage factor while connecting an elastomer, a viscosity elastomer, a Kelvin element, and a viscoelastic–plastic element in series. One- and three-dimensional creep equations were derived, and triaxial creep data were used to determine the model parameters and to validate the model. The results showed that the nonlinear viscoelastic–plastic creep damage model can accurately describe rock deformation in three creep stages under freeze–thaw cycles. In addition, the model can describe the time-dependent strain in the third stage. Parameters G1, G2, and η20’ decrease exponentially with the increase in the number of freeze–thaw cycles while parameter λ increases exponentially. These results provide a theoretical basis for studying the deformation behavior and long-term stability of geotechnical engineering structures in areas with large diurnal temperature differences.

Suggested Citation

  • Yanting Wang & Dong Wang & Guanghe Li & Laigui Wang & Chun Zhu & Yongzhi Du & Zhiwei Zhou, 2023. "Three-dimensional nonlinear model of rock creep under freeze–thaw cycles," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-15, July.
  • Handle: RePEc:plo:pone00:0287605
    DOI: 10.1371/journal.pone.0287605
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287605
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0287605&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0287605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Junbao & Wang, Xiaopeng & Zhang, Qiang & Song, Zhanping & Zhang, Yuwei, 2021. "Dynamic prediction model for surface settlement of horizontal salt rock energy storage," Energy, Elsevier, vol. 235(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Cheng & Dai, Hangyu & Ma, Chao & Zhou, Ping & Zhao, Chengxing & Xu, Deng & Zhang, Liangquan & Liang, Chao, 2024. "Prediction model for three-dimensional surface subsidence of salt cavern storage with different shapes," Energy, Elsevier, vol. 297(C).
    2. Yuanxi Liu & Yinping Li & Hongling Ma & Xilin Shi & Zhuyan Zheng & Zhikai Dong & Kai Zhao, 2022. "Detection and Evaluation Technologies for Using Existing Salt Caverns to Build Energy Storage," Energies, MDPI, vol. 15(23), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0287605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.