IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0285808.html
   My bibliography  Save this article

Ultrasonic characteristics and equivalent crack width of coal and rock bodies around boreholes during progressive failure

Author

Listed:
  • Xiang Ji
  • Tianjun Zhang
  • Lei Zhang
  • Wen Yang
  • Hang Zhang

Abstract

The ultrasonic characteristics of the coal and rock bodies around boreholes during failure are closely related to the crack propagation law. To investigate the ultrasonic characteristics and crack propagation law of coal and rock bodies around boreholes, different grouting samples with boreholes were taken to carry out ultrasonic test during progressive failure. The ultrasonic amplitude, velocity and attenuation coefficient of the samples were analyzed. According to the ultrasonic time difference formula, the equivalent crack width of the sample during the failure process is calculated. The influence of grouting material on the crack propagation law is quantitatively analyzed. The results show that: (1) The peak stress, elastic energy at the peak, ultrasonic parameters and crack propagation of the coal and rock bodies around boreholes show obvious differences influenced by the strength of the grouting material. (2) During the loading process, the arrival time of the first wave of the sample with holes is 5μs later than that of the grouting sample, and the ultrasonic energy attenuates fastest in the time domain, and the coda wave is not developed. (3) During the progressive failure, the ultrasonic velocity and attenuation coefficient of all show three stages of stability(0~0.6σp), slow change(0.6σp~0.8σp) and rapid change(0.8σp~1.0σp). According to the "sudden decrease" of velocity and the "sudden increase" of attenuation coefficient to judge the crack propagation of sample. (4) The equivalent crack width of the sample increases exponentially with the increase of stress level. At the time of reaching the peak stress, the equivalent crack width of SH-BH increases about 0.027mm~0.032mm, SH-PU about 0.01mm~0.014mm, and SH-CEM about 0.002mm~0.006mm.

Suggested Citation

  • Xiang Ji & Tianjun Zhang & Lei Zhang & Wen Yang & Hang Zhang, 2023. "Ultrasonic characteristics and equivalent crack width of coal and rock bodies around boreholes during progressive failure," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0285808
    DOI: 10.1371/journal.pone.0285808
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285808
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285808&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0285808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pang, Mingkun & Pan, Hongyu & Ji, Bingnan & Zhang, Hang & Zhang, Tianjun, 2023. "Experimental investigation of flow regime transition characteristics of fractured coal bodies around gas extraction boreholes," Energy, Elsevier, vol. 270(C).
    2. Tianjun Zhang & Lei Zhang & Shugang Li & Jialei Liu & Hongyu Pan & Shuang Song, 2017. "Stress Inversion of Coal with a Gas Drilling Borehole and the Law of Crack Propagation," Energies, MDPI, vol. 10(11), pages 1-14, October.
    3. Chen Jing & Lei Zhang, 2022. "Characterization of Tensile Crack Propagation and Energy Evolution during the Failure of Coal–Rock Samples Containing Holes," Sustainability, MDPI, vol. 14(21), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyu Pan & Yao Zhang & Lei Zhang & Yan Cao & Yuhang Chu & Shihua Yang, 2025. "Permeability Characteristics of Combined Coal with Different Water Contents," Energies, MDPI, vol. 18(1), pages 1-18, January.
    2. Zhang, Tianjun & Wu, Jinyu & Pang, Mingkun & Liu, Rongtao & Zhu, Shipeng & Pan, Hongyu, 2024. "Experimental study on the negative pressure loss generated by the gas influx process around a long borehole," Energy, Elsevier, vol. 296(C).
    3. Wei Meng & Chuan He, 2020. "Back Analysis of the Initial Geo-Stress Field of Rock Masses in High Geo-Temperature and High Geo-Stress," Energies, MDPI, vol. 13(2), pages 1-20, January.
    4. Lei Zhang & Chen Jing & Shugang Li & Ruoyu Bao & Tianjun Zhang, 2022. "Seepage Law of Nearly Flat Coal Seam Based on Three-Dimensional Structure of Borehole and the Deep Soft Rock Roadway Intersection," Energies, MDPI, vol. 15(14), pages 1-14, July.
    5. Tian-jun Zhang & Lei Zhang & Shu-gang Li & Jia-lei Liu & Hong-yu Pan & Xiang Ji, 2018. "Wave Velocity and Power Spectral Density of Hole-Containing Specimens with Different Moisture Content under Uniaxial Compression," Energies, MDPI, vol. 11(11), pages 1-13, November.
    6. Lou, Zhen & Wang, Kai & Yao, Haowei & Zhao, Wei & Qin, Hengjie & Wu, Zeqi & Wei, Guoying, 2025. "A novel dynamic filling material for plugging fractures around underground gas extraction boreholes: Experimental and engineering performances," Energy, Elsevier, vol. 314(C).
    7. Chen Jing & Lei Zhang, 2022. "Characterization of Tensile Crack Propagation and Energy Evolution during the Failure of Coal–Rock Samples Containing Holes," Sustainability, MDPI, vol. 14(21), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.