IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0275975.html
   My bibliography  Save this article

Degree and direction of overlap between social vulnerability and community resilience measurements

Author

Listed:
  • Sahar Derakhshan
  • Christopher T Emrich
  • Susan L Cutter

Abstract

An ongoing debate in academic and practitioner communities, centers on the measurement similarities and differences between social vulnerability and community resilience. More specifically, many see social vulnerability and community resilience measurements as conceptually and empirically the same. Only through a critical and comparative assessment can we ascertain the extent to which these measurement schemas empirically relate to one another. This paper uses two well-known indices—the social vulnerability index (SoVI) and the Baseline Resilience Indicators for Communities (BRIC) to address the topic. The paper employs spatio-temporal correlations to test for differences or divergence (negative associations) and similarities or convergence (positive associations), and the degree of overlap. These tests use continental U.S. counties, two timeframes (2010 and 2015), and two case study sub-regions (to identify changes in measurement associations going from national to regional scales given the place-based nature of each index). Geospatial analytics indicate a divergence with little overlap between SoVI and BRIC measurements, based on low negative correlation coefficients (around 30%) for both time periods. There is some spatial variability in measurement overlap, but less than 2% of counties show hot spot clustering of correlations of more than 50% in either year. The strongest overlap and divergence in both years occurs in few counties in California, Arizona, and Maine. The degree of overlap in measurements at the regional scale is greater in the Gulf Region (39%) than in the Southeast Atlantic region (21% in 2010; 28% in 2015) suggesting more homogeneity in Gulf Coast counties based on population and place characteristics. However, in both study areas SoVI and BRIC measurements are negatively associated. Given their inclusion in the National Risk Index, both social vulnerability and resilience metrics are needed to interpret the local community capacities in natural hazards risk planning, as a vulnerable community could be highly resilient or vice versa.

Suggested Citation

  • Sahar Derakhshan & Christopher T Emrich & Susan L Cutter, 2022. "Degree and direction of overlap between social vulnerability and community resilience measurements," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-17, October.
  • Handle: RePEc:plo:pone00:0275975
    DOI: 10.1371/journal.pone.0275975
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275975
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0275975&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0275975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric Tate & Md Asif Rahman & Christopher T. Emrich & Christopher C. Sampson, 2021. "Flood exposure and social vulnerability in the United States," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 435-457, March.
    2. Seth E. Spielman & Joseph Tuccillo & David C. Folch & Amy Schweikert & Rebecca Davies & Nathan Wood & Eric Tate, 2020. "Evaluating social vulnerability indicators: criteria and their application to the Social Vulnerability Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 417-436, January.
    3. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    4. Daminda Solangaarachchi & Amy Griffin & Michael Doherty, 2012. "Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: a case study of the Blue Mountains and Ku-ring-gai local council areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1873-1898, November.
    5. Kathleen Sherrieb & Fran Norris & Sandro Galea, 2010. "Measuring Capacities for Community Resilience," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 99(2), pages 227-247, November.
    6. Samuel Rufat & Eric Tate & Christopher T. Emrich & Federico Antolini, 2019. "How Valid Are Social Vulnerability Models?," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 109(4), pages 1131-1153, July.
    7. Casey Zuzak & Matthew Mowrer & Emily Goodenough & Jordan Burns & Nicholas Ranalli & Jesse Rozelle, 2022. "The national risk index: establishing a nationwide baseline for natural hazard risk in the US," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2331-2355, November.
    8. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    9. Paul M. Johnson & Corey E. Brady & Craig Philip & Hiba Baroud & Janey V. Camp & Mark Abkowitz, 2020. "A Factor Analysis Approach Toward Reconciling Community Vulnerability and Resilience Indices for Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1795-1810, September.
    10. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangmin Kim & Jeon-Young Kang & Chulsue Hwang, 2025. "Identifying Indicators Contributing to the Social Vulnerability Index via a Scoping Review," Land, MDPI, vol. 14(2), pages 1-29, January.
    2. Pilar Baquedano-Juliá & Tiago Miguel Ferreira & Camilo Arriagada-Luco & Cristián Sandoval & Nuria Chiara Palazzi & Daniel V. Oliveira, 2024. "Multi-vulnerability analysis for seismic risk management in historic city centres: an application to the historic city centre of La Serena, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9223-9266, August.
    3. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    4. Mary Angelica Painter & Sameer H. Shah & Gwendolyn C. Damestoit & Fariha Khalid & Wendy Prudencio & Musabber Ali Chisty & Fernando Tormos-Aponte & Olga Wilhelmi, 2024. "A systematic scoping review of the Social Vulnerability Index as applied to natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7265-7356, June.
    5. Hamidreza Rabiei-Dastjerdi & Finbarr Brereton & Eoin O’Neill, 2025. "Towards designing a comprehensive composite index for social vulnerability to natural hazards in the big data era: potential challenges and partial solutions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 3885-3913, March.
    6. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    7. Sarah L. Jackson & Sahar Derakhshan & Leah Blackwood & Logan Lee & Qian Huang & Margot Habets & Susan L. Cutter, 2021. "Spatial Disparities of COVID-19 Cases and Fatalities in United States Counties," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
    8. Beth Tellman & Cody Schank & Bessie Schwarz & Peter D. Howe & Alex de Sherbinin, 2020. "Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA," Sustainability, MDPI, vol. 12(15), pages 1-28, July.
    9. Yuan Zhao & Ronak Paul & Sean Reid & Carolina Coimbra Vieira & Chris Wolfe & Yan Zhang & Rumi Chunara, 2024. "Constructing Social Vulnerability Indexes with Increased Data and Machine Learning Highlight the Importance of Wealth Across Global Contexts," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 175(2), pages 639-657, November.
    10. Joshua T. Fergen & Ryan D. Bergstrom, 2021. "Social Vulnerability across the Great Lakes Basin: A County-Level Comparative and Spatial Analysis," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
    11. S. Amin Enderami & Elaina Sutley, 2024. "Social vulnerability score: a scalable index for representing social vulnerability in virtual community resilience testbeds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6457-6480, May.
    12. Sarah Stafford & Jeremy Abramowitz, 2017. "An analysis of methods for identifying social vulnerability to climate change and sea level rise: a case study of Hampton Roads, Virginia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1089-1117, January.
    13. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    14. Wear, David N. & Warziniack, Travis & O’Dea, Claire & Coulston, John, 2024. "Changing Hazards, Exposure, and Vulnerability in the Conterminous United States, 2020–2070," RFF Working Paper Series 24-21, Resources for the Future.
    15. repec:osf:osfxxx:6ewmu_v1 is not listed on IDEAS
    16. Nikole Guerrero & Marta Contreras & Alondra Chamorro & Carolina Martínez & Tomás Echaveguren, 2023. "Social vulnerability in Chile: challenges for multi-scale analysis and disaster risk reduction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3067-3102, July.
    17. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    18. Pollack, Adam & Helgeson, Casey & Kousky, Carolyn & Keller, Klaus, 2023. "Transparency on underlying values is needed for useful equity measurements," OSF Preprints kvyxr, Center for Open Science.
    19. repec:osf:osfxxx:kvyxr_v1 is not listed on IDEAS
    20. Ronak Paul & Sean Reid & Carolina Coimbra Vieira & Christopher Wolfe & Yuan Zhao & Yan Zhang & Rumi Chunara, 2023. "Methodological improvements in social vulnerability index construction reinforce role of wealth across international contexts," MPIDR Working Papers WP-2023-017, Max Planck Institute for Demographic Research, Rostock, Germany.
    21. Xuchao Yang & Lin Lin & Yizhe Zhang & Tingting Ye & Qian Chen & Cheng Jin & Guanqiong Ye, 2019. "Spatially Explicit Assessment of Social Vulnerability in Coastal China," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    22. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.