IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0275219.html
   My bibliography  Save this article

Global circRNA expression changes predate clinical and histological improvements of psoriasis patients upon secukinumab treatment

Author

Listed:
  • Sabine Seeler
  • Liviu-Ionut Moldovan
  • Trine Bertelsen
  • Henrik Hager
  • Lars Iversen
  • Claus Johansen
  • Jørgen Kjems
  • Lasse Sommer Kristensen

Abstract

Psoriasis is a common chronic inflammatory skin disease accompanied by heterogenous clinical and histological features, including a characteristic keratinocyte hyperproliferation and dermal immunogenic profile. In addition, psoriasis is associated with widespread transcriptomic alterations including changes in microRNA (miRNA) and circular RNA (circRNA) abundance, which constitute non-coding RNA (ncRNA) classes with specific regulatory capacities in diverse physiological and pathological processes. However, the knowledge about the expression dynamics of ncRNA during psoriasis treatment is sparse. To elucidate the dynamics of miRNA and circRNA abundance during secukinumab (anti-IL-17A) treatment, we studied their expression patterns in skin biopsies from 14 patients with severe plaque-type psoriasis before and during an 84-day secukinumab therapy at day 0, 4, 14, 42, and 84 using NanoString nCounter technology. We found a comprehensive downregulation of the majority of investigated circRNAs and specific alterations in the miRNA profile, including an upregulation of miR-203a-3p, miR-93-5p, and miR-378i in lesional compared to non-lesional skin before treatment. During treatment, the circRNAs progressively returned to the expression levels observed in non-lesional skin and already four days after treatment initiation most circRNAs were significantly upregulated. In comparison, for miRNAs, the normalization to baseline during treatment was delayed and limited to a subset of miRNAs. Moreover, we observed a strong correlation between multiple circRNAs, including ciRS-7 and circPTPRA, and the psoriasis area and severity index (PASI). Similar pronounced correlations could, however, not be found for miRNAs. Finally, we did not observe any significant changes in circRNA expression in peripheral blood mononuclear cells during treatment. In conclusion, we uncovered a rapid shift in global circRNA abundance upon anti-IL-17A treatment, which predated clinical and histological improvements, and a strong correlation with PASI, indicating a biomarker potential of individual circRNAs.

Suggested Citation

  • Sabine Seeler & Liviu-Ionut Moldovan & Trine Bertelsen & Henrik Hager & Lars Iversen & Claus Johansen & Jørgen Kjems & Lasse Sommer Kristensen, 2022. "Global circRNA expression changes predate clinical and histological improvements of psoriasis patients upon secukinumab treatment," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-23, September.
  • Handle: RePEc:plo:pone00:0275219
    DOI: 10.1371/journal.pone.0275219
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275219
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0275219&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0275219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tuğçe Aktaş & İbrahim Avşar Ilık & Daniel Maticzka & Vivek Bhardwaj & Cecilia Pessoa Rodrigues & Gerhard Mittler & Thomas Manke & Rolf Backofen & Asifa Akhtar, 2017. "DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome," Nature, Nature, vol. 544(7648), pages 115-119, April.
    2. Michelle A. Lowes & Anne M. Bowcock & James G. Krueger, 2007. "Pathogenesis and therapy of psoriasis," Nature, Nature, vol. 445(7130), pages 866-873, February.
    3. Lorenzo Errichelli & Stefano Dini Modigliani & Pietro Laneve & Alessio Colantoni & Ivano Legnini & Davide Capauto & Alessandro Rosa & Riccardo De Santis & Rebecca Scarfò & Giovanna Peruzzi & Lei Lu & , 2017. "FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
    4. Rui Yi & Matthew N. Poy & Markus Stoffel & Elaine Fuchs, 2008. "A skin microRNA promotes differentiation by repressing ‘stemness’," Nature, Nature, vol. 452(7184), pages 225-229, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoqing Shen & Omer An & Xi Ren & Yangyang Song & Sze Jing Tang & Xin-Yu Ke & Jian Han & Daryl Jin Tai Tay & Vanessa Hui En Ng & Fernando Bellido Molias & Priyankaa Pitcheshwar & Ka Wai Leong & Ker-Ka, 2022. "ADARs act as potent regulators of circular transcriptome in cancer," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. repec:plo:pone00:0043908 is not listed on IDEAS
    3. Juan Luis Sanz-Cabanillas & Juan Ruano & Francisco Gomez-Garcia & Patricia Alcalde-Mellado & Jesus Gay-Mimbrera & Macarena Aguilar-Luque & Beatriz Maestre-Lopez & Marcelino Gonzalez-Padilla & Pedro J , 2017. "Author-paper affiliation network architecture influences the methodological quality of systematic reviews and meta-analyses of psoriasis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    4. Peng Wang & Zhitao Huang & Yili Peng & Hongwei Li & Tong Lin & Yingyu Zhao & Zheng Hu & Zhanmei Zhou & Weijie Zhou & Youhua Liu & Fan Fan Hou, 2022. "Circular RNA circBNC2 inhibits epithelial cell G2-M arrest to prevent fibrotic maladaptive repair," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Jia Song & Wei Zhao & Xin Zhang & Wenyu Tian & Xuyang Zhao & Liang Ma & Yongtong Cao & Yuxin Yin & Xuehui Zhang & Xuliang Deng & Dan Lu, 2022. "Mutant RIG-I enhances cancer-related inflammation through activation of circRIG-I signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Steffen Fuchs & Clara Danßmann & Filippos Klironomos & Annika Winkler & Jörg Fallmann & Louisa-Marie Kruetzfeldt & Annabell Szymansky & Julian Naderi & Stephan H. Bernhart & Laura Grunewald & Konstant, 2023. "Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Dario Dattilo & Gaia Di Timoteo & Adriano Setti & Andrea Giuliani & Giovanna Peruzzi & Manuel Beltran Nebot & Alvaro Centrón-Broco & Davide Mariani & Chiara Mozzetta & Irene Bozzoni, 2023. "The m6A reader YTHDC1 and the RNA helicase DDX5 control the production of rhabdomyosarcoma-enriched circRNAs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Yue Li & ShiHui Wang & YouHua Zhang & ZhaoYuan Liu & YunZhe Zheng & Kun Zhang & ShiYang Chen & XiaoYing Lv & MengWen Huang & XingChao Pan & YaJuan Zheng & MengYa Yuan & GaoXiang Ge & Yi Arial Zeng & C, 2024. "Ca2+ transients on the T cell surface trigger rapid integrin activation in a timescale of seconds," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Zhikai Wang & Yang Sun & Fangzhou Lou & Jing Bai & Hong Zhou & Xiaojie Cai & Libo Sun & Qianqian Yin & Sibei Tang & Yue Wu & Li Fan & Zhenyao Xu & Hong Wang & Xiaoyu Hu & Honglin Wang, 2022. "Targeting the transcription factor HES1 by L-menthol restores protein phosphatase 6 in keratinocytes in models of psoriasis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0275219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.