IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0273610.html
   My bibliography  Save this article

Ranking influential nodes in complex networks with community structure

Author

Listed:
  • Stephany Rajeh
  • Hocine Cherifi

Abstract

Quantifying a node’s importance is decisive for developing efficient strategies to curb or accelerate any spreading phenomena. Centrality measures are well-known methods used to quantify the influence of nodes by extracting information from the network’s structure. The pitfall of these measures is to pinpoint nodes located in the vicinity of each other, saturating their shared zone of influence. In this paper, we propose a ranking strategy exploiting the ubiquity of the community structure in real-world networks. The proposed community-aware ranking strategy naturally selects a set of distant spreaders with the most significant influence in the networks. One can use it with any centrality measure. We investigate its effectiveness using real-world and synthetic networks with controlled parameters in a Susceptible-Infected-Recovered (SIR) diffusion model scenario. Experimental results indicate the superiority of the proposed ranking strategy over all its counterparts agnostic about the community structure. Additionally, results show that it performs better in networks with a strong community structure and a high number of communities of heterogeneous sizes.

Suggested Citation

  • Stephany Rajeh & Hocine Cherifi, 2022. "Ranking influential nodes in complex networks with community structure," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-26, August.
  • Handle: RePEc:plo:pone00:0273610
    DOI: 10.1371/journal.pone.0273610
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273610
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0273610&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0273610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esfandiari, Shima & Fakhrahmad, Seyed Mostafa, 2025. "The collaborative role of K-Shell and PageRank for identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0273610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.