IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0273445.html
   My bibliography  Save this article

The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis

Author

Listed:
  • Mingsi Liu
  • Jinghui Wu
  • Nian Wang
  • Xianqin Zhang
  • Yujiao Bai
  • Jinlin Guo
  • Lin Zhang
  • Shulin Liu
  • Ke Tao

Abstract

Lung cancer is a common malignant tumor disease with high clinical disability and death rates. Currently, lung cancer diagnosis mainly relies on manual pathology section analysis, but the low efficiency and subjective nature of manual film reading can lead to certain misdiagnoses and omissions. With the continuous development of science and technology, artificial intelligence (AI) has been gradually applied to imaging diagnosis. Although there are reports on AI-assisted lung cancer diagnosis, there are still problems such as small sample size and untimely data updates. Therefore, in this study, a large amount of recent data was included, and meta-analysis was used to evaluate the value of AI for lung cancer diagnosis. With the help of STATA16.0, the value of AI-assisted lung cancer diagnosis was assessed by specificity, sensitivity, negative likelihood ratio, positive likelihood ratio, diagnostic ratio, and plotting the working characteristic curves of subjects. Meta-regression and subgroup analysis were used to investigate the value of AI-assisted lung cancer diagnosis. The results of the meta-analysis showed that the combined sensitivity of the AI-aided diagnosis system for lung cancer diagnosis was 0.87 [95% CI (0.82, 0.90)], specificity was 0.87 [95% CI (0.82, 0.91)] (CI stands for confidence interval.), the missed diagnosis rate was 13%, the misdiagnosis rate was 13%, the positive likelihood ratio was 6.5 [95% CI (4.6, 9.3)], the negative likelihood ratio was 0.15 [95% CI (0.11, 0.21)], a diagnostic ratio of 43 [95% CI (24, 76)] and a sum of area under the combined subject operating characteristic (SROC) curve of 0.93 [95% CI (0.91, 0.95)]. Based on the results, the AI-assisted diagnostic system for CT (Computerized Tomography), imaging has considerable diagnostic accuracy for lung cancer diagnosis, which is of significant value for lung cancer diagnosis and has greater feasibility of realizing the extension application in the field of clinical diagnosis.

Suggested Citation

  • Mingsi Liu & Jinghui Wu & Nian Wang & Xianqin Zhang & Yujiao Bai & Jinlin Guo & Lin Zhang & Shulin Liu & Ke Tao, 2023. "The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-20, March.
  • Handle: RePEc:plo:pone00:0273445
    DOI: 10.1371/journal.pone.0273445
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273445
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0273445&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0273445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kun-Hsing Yu & Ce Zhang & Gerald J. Berry & Russ B. Altman & Christopher Ré & Daniel L. Rubin & Michael Snyder, 2016. "Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    2. Pranav Rajpurkar & Jeremy Irvin & Robyn L Ball & Kaylie Zhu & Brandon Yang & Hershel Mehta & Tony Duan & Daisy Ding & Aarti Bagul & Curtis P Langlotz & Bhavik N Patel & Kristen W Yeom & Katie Shpanska, 2018. "Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Eric Engle & Andrei Gabrielian & Alyssa Long & Darrell E Hurt & Alex Rosenthal, 2020. "Performance of Qure.ai automatic classifiers against a large annotated database of patients with diverse forms of tuberculosis," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    3. Mingzhu Liu & Chirag Nagpal & Artur Dubrawski, 2024. "Deep Survival Models Can Improve Long-Term Mortality Risk Estimates from Chest Radiographs," Forecasting, MDPI, vol. 6(2), pages 1-14, May.
    4. Tianyu Han & Sven Nebelung & Federico Pedersoli & Markus Zimmermann & Maximilian Schulze-Hagen & Michael Ho & Christoph Haarburger & Fabian Kiessling & Christiane Kuhl & Volkmar Schulz & Daniel Truhn, 2021. "Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Lida Qiu & Deyong Kang & Chuan Wang & Wenhui Guo & Fangmeng Fu & Qingxiang Wu & Gangqin Xi & Jiajia He & Liqin Zheng & Qingyuan Zhang & Xiaoxia Liao & Lianhuang Li & Jianxin Chen & Haohua Tu, 2022. "Intratumor graph neural network recovers hidden prognostic value of multi-biomarker spatial heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. repec:plo:pmed00:1002721 is not listed on IDEAS
    7. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Seung Seog Han & Ik Jun Moon & Seong Hwan Kim & Jung-Im Na & Myoung Shin Kim & Gyeong Hun Park & Ilwoo Park & Keewon Kim & Woohyung Lim & Ju Hee Lee & Sung Eun Chang, 2020. "Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: A retrospective validation study," PLOS Medicine, Public Library of Science, vol. 17(11), pages 1-21, November.
    9. Pei-Chen Tsai & Tsung-Hua Lee & Kun-Chi Kuo & Fang-Yi Su & Tsung-Lu Michael Lee & Eliana Marostica & Tomotaka Ugai & Melissa Zhao & Mai Chan Lau & Juha P. Väyrynen & Marios Giannakis & Yasutoshi Takas, 2023. "Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Shidan Wang & Ruichen Rong & Qin Zhou & Donghan M. Yang & Xinyi Zhang & Xiaowei Zhan & Justin Bishop & Zhikai Chi & Clare J. Wilhelm & Siyuan Zhang & Curtis R. Pickering & Mark G. Kris & John Minna & , 2023. "Deep learning of cell spatial organizations identifies clinically relevant insights in tissue images," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Adalberto Claudio Quiros & Nicolas Coudray & Anna Yeaton & Xinyu Yang & Bojing Liu & Hortense Le & Luis Chiriboga & Afreen Karimkhan & Navneet Narula & David A. Moore & Christopher Y. Park & Harvey Pa, 2024. "Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    12. Gil Shamai & Amir Livne & António Polónia & Edmond Sabo & Alexandra Cretu & Gil Bar-Sela & Ron Kimmel, 2022. "Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Shashank Shetty & Ananthanarayana V S. & Ajit Mahale, 2022. "MS-CheXNet: An Explainable and Lightweight Multi-Scale Dilated Network with Depthwise Separable Convolution for Prediction of Pulmonary Abnormalities in Chest Radiographs," Mathematics, MDPI, vol. 10(19), pages 1-29, October.
    14. Stephen F Weng & Luis Vaz & Nadeem Qureshi & Joe Kai, 2019. "Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    15. Weijie Fan & Yi Yang & Jing Qi & Qichuan Zhang & Cuiwei Liao & Li Wen & Shuang Wang & Guangxian Wang & Yu Xia & Qihua Wu & Xiaotao Fan & Xingcai Chen & Mi He & JingJing Xiao & Liu Yang & Yun Liu & Jia, 2024. "A deep-learning-based framework for identifying and localizing multiple abnormalities and assessing cardiomegaly in chest X-ray," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Igor Dolgalev & Hua Zhou & Nina Murrell & Hortense Le & Theodore Sakellaropoulos & Nicolas Coudray & Kelsey Zhu & Varshini Vasudevaraja & Anna Yeaton & Chandra Goparaju & Yonghua Li & Imran Sulaiman &, 2023. "Inflammation in the tumor-adjacent lung as a predictor of clinical outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Byungsoo Ahn & Damin Moon & Hyun-Soo Kim & Chung Lee & Nam Hoon Cho & Heung-Kook Choi & Dongmin Kim & Jung-Yun Lee & Eun Ji Nam & Dongju Won & Hee Jung An & Sun Young Kwon & Su-Jin Shin & Hye Ra Jung , 2024. "Histopathologic image–based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Eun Young Kim & Young Jae Kim & Won-Jun Choi & Gi Pyo Lee & Ye Ra Choi & Kwang Nam Jin & Young Jun Cho, 2021. "Performance of a deep-learning algorithm for referable thoracic abnormalities on chest radiographs: A multicenter study of a health screening cohort," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0273445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.