IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0272269.html
   My bibliography  Save this article

Automatic grading for Arabic short answer questions using optimized deep learning model

Author

Listed:
  • Mustafa Abdul Salam
  • Mohamed Abd El-Fatah
  • Naglaa Fathy Hassan

Abstract

Auto-grading of short answer questions is considered a challenging problem in the processing of natural language. It requires a system to comprehend the free text answers to automatically assign a grade for a student answer compared to one or more model answers. This paper suggests an optimized deep learning model for grading short-answer questions automatically by using various sizes of datasets collected in the Science subject for students in seventh grade in Egypt. The proposed system is a hybrid approach that optimizes a deep learning technique called LSTM (Long Short Term Memory) with a recent optimization algorithm called a Grey Wolf Optimizer (GWO). The GWO is employed to optimize the LSTM by selecting the best dropout and recurrent dropout rates of LSTM hyperparameters rather than manual choice. Using GWO makes the LSTM model more generalized and can also avoid the problem of overfitting in forecasting the students’ scores to improve the learning process and save instructors’ time and effort. The model’s performance is measured in terms of the Root Mean Squared Error (RMSE), the Pearson correlation coefficient, and R-Square. According to the simulation results, the hybrid GWO with the LSTM model ensured the best performance and outperformed the classical LSTM model and other compared models such that it had the highest Pearson correlation coefficient value, the lowest RMSE value, and the best R square value in all experiments, but higher training time than the traditional deep learning model.

Suggested Citation

  • Mustafa Abdul Salam & Mohamed Abd El-Fatah & Naglaa Fathy Hassan, 2022. "Automatic grading for Arabic short answer questions using optimized deep learning model," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-41, August.
  • Handle: RePEc:plo:pone00:0272269
    DOI: 10.1371/journal.pone.0272269
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272269
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0272269&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0272269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ganga Negi & Anuj Kumar & Sangeeta Pant & Mangey Ram, 2021. "GWO: a review and applications," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 1-8, February.
    2. Ashok Kumar P & Shiva Shankar G & Praveen Kumar Reddy Maddikunta & Thippa Reddy Gadekallu & Abdulrahman Al-Ahmari & Mustufa Haider Abidi, 2020. "Location Based Business Recommendation Using Spatial Demand," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Águila-León, Jesús & Vargas-Salgado, Carlos & Díaz-Bello, Dácil & Montagud-Montalvá, Carla, 2024. "Optimizing photovoltaic systems: A meta-optimization approach with GWO-Enhanced PSO algorithm for improving MPPT controllers," Renewable Energy, Elsevier, vol. 230(C).
    2. Huseyin Cagan Kilinc & Adem Yurtsever, 2022. "Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    3. Eduardo Pichardo & Esteban Anides & Angel Vazquez & Luis Garcia & Juan G. Avalos & Giovanny Sánchez & Héctor M. Pérez & Juan C. Sánchez, 2023. "A Compact and High-Performance Acoustic Echo Canceller Neural Processor Using Grey Wolf Optimizer along with Least Mean Square Algorithms," Mathematics, MDPI, vol. 11(6), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0272269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.