IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0252894.html
   My bibliography  Save this article

Excess demand prediction for bike sharing systems

Author

Listed:
  • Xin Liu
  • Konstantinos Pelechrinis

Abstract

One of the most crucial elements for the long-term success of shared transportation systems (bikes, cars etc.) is their ubiquitous availability. To achieve this, and avoid having stations with no available vehicle, service operators rely on rebalancing. While different operators have different approaches to this functionality, overall it requires a demand-supply analysis of the various stations. While trip data can be used for this task, the existing methods in the literature only capture the observed demand and supply rates. However, the excess demand rates (e.g., how many customers attempted to rent a bike from an empty station) are not recorded in these data, but they are important for the in-depth understanding of the systems’ demand patterns that ultimately can inform operations like rebalancing. In this work we propose a method to estimate the excess demand and supply rates from trip and station availability data. Key to our approach is identifying what we term as excess demand pulse (EDP) in availability data as a signal for the existence of excess demand. We then proceed to build a Skellam regression model that is able to predict the difference between the total demand and supply at a given station during a specific time period. Our experiments with real data further validate the accuracy of our proposed method.

Suggested Citation

  • Xin Liu & Konstantinos Pelechrinis, 2021. "Excess demand prediction for bike sharing systems," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0252894
    DOI: 10.1371/journal.pone.0252894
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252894
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252894&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0252894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Echeverría, Lucía & Gimenez-Nadal, José Ignacio & Molina, José Alberto, 2022. "Active Commuting and the Health of Workers," IZA Discussion Papers 15572, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0252894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.