IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0245000.html
   My bibliography  Save this article

The effect of active hand movement on visually perceived depth direction

Author

Listed:
  • Hiroyuki Umemura

Abstract

This study investigated the effect of active hand movement on the perception of 3-D depth change. In Experiment 1, the 3-D height of an object synchronously changed with the participant’s hand movement, but the 3-D height of the object was incongruent with the distance moved by the hand. The results showed no effect of active hand movement on perceived depth. This was inconsistent with the results of a previous study conducted in a similar setting with passive hand movement. It was speculated that this contradiction appeared because the conflict between the distance moved by the hand and visual depth changes were more easily detected in the active movement situation. Therefore, it was assumed that in a condition where this conflict was hard to detect, active hand movement might affect visual depth perception. To examine this hypothesis, Experiment 2 examined whether information from hand movement would resolve the ambiguity in the depth direction of a shaded visual shape. In this experiment, the distance moved by the hand could (logically) accord with either of two depth directions (concave or convex). Moreover, the discrepancy in the distances between visual and haptic perception could be ambiguous because shading cues are unreliable in estimating absolute depth. The results showed that perceived depth directions were affected by the direction of active hand movement, thus supporting the hypothesis. Based on these results, simulations based on a causal inference model were performed, and it was found that these simulations could replicate the qualitative aspects of the experimental results.

Suggested Citation

  • Hiroyuki Umemura, 2021. "The effect of active hand movement on visually perceived depth direction," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-21, January.
  • Handle: RePEc:plo:pone00:0245000
    DOI: 10.1371/journal.pone.0245000
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245000
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0245000&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0245000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc O. Ernst & Martin S. Banks, 2002. "Humans integrate visual and haptic information in a statistically optimal fashion," Nature, Nature, vol. 415(6870), pages 429-433, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    2. Loreen Hertäg & Katharina A. Wilmes & Claudia Clopath, 2025. "Uncertainty estimation with prediction-error circuits," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Catarina Mendonça & Pietro Mandelli & Ville Pulkki, 2016. "Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-18, December.
    4. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    6. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Xiaochen Zhang & Lingling Jin & Jie Zhao & Jiazhen Li & Ding-Bang Luh & Tiansheng Xia, 2022. "The Influences of Different Sensory Modalities and Cognitive Loads on Walking Navigation: A Preliminary Study," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    8. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    9. Yingjie Lai & Chaemoon Yoo & Xiaomin Zhou & Younghwan Pan, 2023. "Elements of Food Service Design for Low-Carbon Tourism-Based on Dine-In Tourist Behavior and Attitudes in China," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    10. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    11. Jean-François Patri & Pascal Perrier & Jean-Luc Schwartz & Julien Diard, 2018. "What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-38, January.
    12. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    13. Jennifer Laura Lee & Wei Ji Ma, 2021. "Point-estimating observer models for latent cause detection," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-29, October.
    14. Anna Lambrechts & Vincent Walsh & Virginie van Wassenhove, 2013. "Evidence Accumulation in the Magnitude System," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
    15. Noelle R B Stiles & Monica Li & Carmel A Levitan & Yukiyasu Kamitani & Shinsuke Shimojo, 2018. "What you saw is what you will hear: Two new illusions with audiovisual postdictive effects," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
    16. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    17. Lunn, Pete & Duffy, David, 2010. "The Euro Through the Looking-Glass: Perceived Inflation Following the 2002 Currency Changeover," Papers WP338, Economic and Social Research Institute (ESRI).
    18. Igor Linkov & Susan Cormier & Joshua Gold & F. Kyle Satterstrom & Todd Bridges, 2012. "Using Our Brains to Develop Better Policy," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 374-380, March.
    19. Seha Kim & Johannes Burge, 2020. "Natural scene statistics predict how humans pool information across space in surface tilt estimation," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-26, June.
    20. Konrad P Körding & Ulrik Beierholm & Wei Ji Ma & Steven Quartz & Joshua B Tenenbaum & Ladan Shams, 2007. "Causal Inference in Multisensory Perception," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-10, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.