IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0236112.html
   My bibliography  Save this article

Modeling drug-resistant tuberculosis amplification rates and intervention strategies in Bangladesh

Author

Listed:
  • Md Abdul Kuddus
  • Michael T Meehan
  • Lisa J White
  • Emma S McBryde
  • Adeshina I Adekunle

Abstract

Tuberculosis (TB) is the seventh leading cause of morbidity and mortality in Bangladesh. Although the National TB control program (NTP) of Bangladesh is implementing its nationwide TB control strategies, more specific and effective single or combination interventions are needed to control drug-susceptible (DS) and multi-drug resistant (MDR) TB. In this study, we developed a two strain TB mathematical model with amplification and fit it to the Bangladesh TB data to understand the transmission dynamics of DS and MDR TB. Sensitivity analysis was used to identify important parameters. We evaluated the cost-effectiveness of varying combinations of four basic control strategies including distancing, latent case finding, case holding and active case finding, all within the optimal control framework. From our fitting, the model with different transmission rates between DS and MDR TB best captured the Bangladesh TB reported case counts. The estimated basic reproduction number for DS TB was 1.14 and for MDR TB was 0.54, with an amplification rate of 0.011 per year. The sensitivity analysis also indicated that the transmission rates for both DS and MDR TB had the largest influence on prevalence. To reduce the burden of TB (both DS and MDR), our finding suggested that a quadruple control strategy that combines distancing control, latent case finding, case holding and active case finding is the most cost-effective. Alternative strategies can be adopted to curb TB depending on availability of resources and policy makers’ decisions.

Suggested Citation

  • Md Abdul Kuddus & Michael T Meehan & Lisa J White & Emma S McBryde & Adeshina I Adekunle, 2020. "Modeling drug-resistant tuberculosis amplification rates and intervention strategies in Bangladesh," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-26, July.
  • Handle: RePEc:plo:pone00:0236112
    DOI: 10.1371/journal.pone.0236112
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236112
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0236112&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0236112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ellen Brooks-Pollock & Ted Cohen & Megan Murray, 2010. "The Impact of Realistic Age Structure in Simple Models of Tuberculosis Transmission," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-6, January.
    2. Yang, Yali & Li, Jianquan & Ma, Zhien & Liu, Luju, 2010. "Global stability of two models with incomplete treatment for tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 79-85.
    3. Ullah, Saif & Khan, Muhammad Altaf & Farooq, Muhammad & Gul, Taza, 2019. "Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 181-199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuddus, Md Abdul & McBryde, Emma S. & Adekunle, Adeshina I. & White, Lisa J. & Meehan, Michael T., 2021. "Mathematical analysis of a two-strain disease model with amplification," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Kuddus, Md Abdul & McBryde, Emma S. & Adekunle, Adeshina I. & Meehan, Michael T., 2022. "Analysis and simulation of a two-strain disease model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yue, 2022. "Extinction, persistence and density function analysis of a stochastic two-strain disease model with drug resistance mutation," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    2. Kuddus, Md Abdul & McBryde, Emma S. & Adekunle, Adeshina I. & White, Lisa J. & Meehan, Michael T., 2021. "Mathematical analysis of a two-strain disease model with amplification," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Richard Pitman & David Fisman & Gregory S. Zaric & Maarten Postma & Mirjam Kretzschmar & John Edmunds & Marc Brisson, 2012. "Dynamic Transmission Modeling," Medical Decision Making, , vol. 32(5), pages 712-721, September.
    5. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    6. Fatima Sulayman & Farah Aini Abdullah & Mohd Hafiz Mohd, 2021. "An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    7. Li, Yong & Liu, Xianning & Yuan, Yiyi & Li, Jiang & Wang, Lianwen, 2022. "Global analysis of tuberculosis dynamical model and optimal control strategies based on case data in the United States," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    8. Kumar, Sunil & Chauhan, R.P. & Momani, Shaher & Hadid, Samir, 2021. "A study of fractional TB model due to mycobacterium tuberculosis bacteria," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Ullah, Saif & Khan, Muhammad Altaf & Farooq, Muhammad & Gul, Taza, 2019. "Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 181-199.
    10. Zafar, Zain Ul Abadin & Zaib, Sumera & Hussain, Muhammad Tanveer & Tunç, Cemil & Javeed, Shumaila, 2022. "Analysis and numerical simulation of tuberculosis model using different fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Chu-Chang Ku & Peter J Dodd, 2019. "Forecasting the impact of population ageing on tuberculosis incidence," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-13, September.
    12. Ullah, Saif & Altaf Khan, Muhammad & Farooq, Muhammad, 2018. "A fractional model for the dynamics of TB virus," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 63-71.
    13. Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
    14. Al-arydah, Mo’tassem & Smith̏, Robert, 2011. "An age-structured model of human papillomavirus vaccination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 629-652.
    15. Kuddus, Md Abdul & Rahman, Azizur, 2022. "Modelling and analysis of human–mosquito malaria transmission dynamics in Bangladesh," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 123-138.
    16. Madhu, Kalyanasundaram & Al-arydah, Mo’tassem, 2021. "Optimal vaccine for human papillomavirus and age-difference between partners," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 325-346.
    17. Chung‐Min Liao & Yi‐Hsien Cheng & Yi‐Jun Lin & Nan‐Hung Hsieh & Tang‐Luen Huang & Chia‐Pin Chio & Szu‐Chieh Chen & Min‐Pei Ling, 2012. "A Probabilistic Transmission and Population Dynamic Model to Assess Tuberculosis Infection Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1420-1432, August.
    18. Kuddus, Md Abdul & McBryde, Emma S. & Adekunle, Adeshina I. & Meehan, Michael T., 2022. "Analysis and simulation of a two-strain disease model with nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Graciani Rodrigues, C.C. & Espíndola, Aquino L. & Penna, T.J.P., 2015. "An agent-based computational model for tuberculosis spreading on age-structured populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 52-59.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0236112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.