Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0224502
Download full text from publisher
References listed on IDEAS
- Calcagno, Vincent & de Mazancourt, Claire, 2010. "glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i12).
- Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sazzli Kasim & Putri Nur Fatin Amir Rudin & Sorayya Malek & Firdaus Aziz & Wan Azman Wan Ahmad & Khairul Shafiq Ibrahim & Muhammad Hanis Muhmad Hamidi & Raja Ezman Raja Shariff & Alan Yean Yip Fong & , 2024. "Data analytics approach for short- and long-term mortality prediction following acute non-ST-elevation myocardial infarction (NSTEMI) and Unstable Angina (UA) in Asians," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-28, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Majd Oteibi & Adam Tamimi & Kaneez Abbas & Gabriel Tamimi & Danesh Khazaei & Hadi Khazaei, 2024. "Advancing Digital Health using AI and Machine Learning Solutions for Early Ultrasonic Detection of Breast Disorders in Women," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 518-527, November.
- Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
- Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
- Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
- Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
- Ting Wang & Boyang Zang & Chui Kong & Yigang Li & Xiaomin Yang & Yi Yu, 2025. "Intelligent and precise auxiliary diagnosis of breast tumors using deep learning and radiomics," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-11, June.
- Sonika Darshan, 2024. "Data Mining for Disease Diagnosis: A Review of Machine Learning Approaches in Healthcare," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 716-726.
- Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
- Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Yue Sun & Songmin Dai & Jide Li & Yin Zhang & Xiaoqiang Li, 2019. "Tooth-Marked Tongue Recognition Using Gradient-Weighted Class Activation Maps," Future Internet, MDPI, vol. 11(2), pages 1-12, February.
- DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
- Wenjuan Fan & Jingnan Liu & Shuwan Zhu & Panos M. Pardalos, 2020. "Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS)," Annals of Operations Research, Springer, vol. 294(1), pages 567-592, November.
- Shang Li & Fei Yu & Shankou Zhang & Huige Yin & Hairong Lin, 2025. "Optimization of Direct Convolution Algorithms on ARM Processors for Deep Learning Inference," Mathematics, MDPI, vol. 13(5), pages 1-19, February.
- Young Jae Kim & Seung Seog Han & Hee Joo Yang & Sung Eun Chang, 2020. "Prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-9, June.
- Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
- László Kovács, 2019. "Applications of Metaheuristics in Insurance," Society and Economy, Akadémiai Kiadó, Hungary, vol. 41(3), pages 371-395, September.
- Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014.
"evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
- Thomas Grubinger & Achim Zeileis & Karl-Peter Pfeiffer, 2011. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Working Papers 2011-20, Faculty of Economics and Statistics, Universität Innsbruck.
- Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
- Verónica Lloréns-Rico & Ann C. Gregory & Johan Van Weyenbergh & Sander Jansen & Tina Van Buyten & Junbin Qian & Marcos Braz & Soraya Maria Menezes & Pierre Van Mol & Lore Vanderbeke & Christophe Dooms, 2021. "Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0224502. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.