IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0201960.html
   My bibliography  Save this article

Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm

Author

Listed:
  • Yuta Yamamoto
  • Shota Miyazaki
  • Kenshiro Maruyama
  • Ryo Kobayashi
  • Minh Nguyen Tuyet Le
  • Ayumu Kano
  • Akiko Kondow
  • Shuji Fujii
  • Kiyoshi Ohnuma

Abstract

Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial–mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial–mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.

Suggested Citation

  • Yuta Yamamoto & Shota Miyazaki & Kenshiro Maruyama & Ryo Kobayashi & Minh Nguyen Tuyet Le & Ayumu Kano & Akiko Kondow & Shuji Fujii & Kiyoshi Ohnuma, 2018. "Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-13, September.
  • Handle: RePEc:plo:pone00:0201960
    DOI: 10.1371/journal.pone.0201960
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201960
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0201960&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0201960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Takagi & Masayuki J Sato & Toshio Yanagida & Masahiro Ueda, 2008. "Functional Analysis of Spontaneous Cell Movement under Different Physiological Conditions," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-7, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can Guven & Erin Rericha & Edward Ott & Wolfgang Losert, 2013. "Modeling and Measuring Signal Relay in Noisy Directed Migration of Cell Groups," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.
    2. Laurent Golé & Charlotte Rivière & Yoshinori Hayakawa & Jean-Paul Rieu, 2011. "A Quorum-Sensing Factor in Vegetative Dictyostelium Discoideum Cells Revealed by Quantitative Migration Analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    3. de Almeida, Rita M.C. & Giardini, Guilherme S.Y. & Vainstein, Mendeli & Glazier, James A. & Thomas, Gilberto L., 2022. "Exact solution for the Anisotropic Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    4. Azevedo, T.N. & Rizzi, L.G., 2022. "Time-correlated forces and biological variability in cell motility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0201960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.