IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0187181.html
   My bibliography  Save this article

Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change

Author

Listed:
  • Tamara S Wilson
  • Benjamin M Sleeter
  • D Richard Cameron

Abstract

With growing demand and highly variable inter-annual water supplies, California’s water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992–2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as “lowest of the low” and “highest of the high” anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories.

Suggested Citation

  • Tamara S Wilson & Benjamin M Sleeter & D Richard Cameron, 2017. "Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
  • Handle: RePEc:plo:pone00:0187181
    DOI: 10.1371/journal.pone.0187181
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187181
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0187181&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0187181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamara S. Wilson & Nathan D. Van Schmidt & Ruth Langridge, 2020. "Land-Use Change and Future Water Demand in California’s Central Coast," Land, MDPI, vol. 9(9), pages 1-21, September.
    2. Manuschevich, Daniela & Sarricolea, Pablo & Galleguillos, Mauricio, 2019. "Integrating socio-ecological dynamics into land use policy outcomes: A spatial scenario approach for native forest conservation in south-central Chile," Land Use Policy, Elsevier, vol. 84(C), pages 31-42.
    3. Elias Marvinney & Jin Wook Ro & Alissa Kendall, 2020. "Trade-Offs in Net Life Cycle Energy Balance and Water Consumption in California Almond Orchards," Energies, MDPI, vol. 13(12), pages 1-16, June.
    4. Prasenjit N. Ghosh & Ruiqing Miao & Emir Malikov, 2023. "Crop insurance premium subsidy and irrigation water withdrawals in the western United States," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(4), pages 968-992, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0187181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.