IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0183152.html
   My bibliography  Save this article

Biased niches – Species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency

Author

Listed:
  • Jana Michaelis
  • Martin R Diekmann

Abstract

The study aimed to examine the effects of different numbers of presences and frequencies (proportions) of occurrences of species in a plot data set of forest vegetation on the species response curves and their niche attributes, based on Huisman-Olff-Fresco models (HOF). We modeled responses of 72 to 105 herbaceous forest species along a pH gradient under 14 different random sampling scenarios by varying the number of presences and absences used for model fitting. Mean niche attributes were calculated from 100 repetitive runs for each scenario and species. Re-prediction success of HOF models among the repetitive runs was highest when the total number of plots was high and the frequency of occurrences was low. With low plot numbers and high frequencies, less complicated model types (no response or monotonically increasing/decreasing responses) predominate. Measures of species niche boundaries (limits & borders) and niche width were strongly influenced by changes in sampling characteristics. With an increasing number of presences and an increasing frequency, limits and borders shifted to more extreme values, leading to wider niches. In contrast, species optima showed almost no change between the scenarios. Thus, the detected ecological response of a species often depends on the size of the data set and the relation between presences and absences of a species. In general, high data quantities are required for reliable response curve modeling with HOF models, which prevents the assessment of the responses of many rare species. To avoid undesired bias by differing sampling characteristics when comparing niches between different species or between data sets, the data basis used for model fitting should be adjusted according to the niche attribute in question, for example by keeping the frequency of the species constant.

Suggested Citation

  • Jana Michaelis & Martin R Diekmann, 2017. "Biased niches – Species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0183152
    DOI: 10.1371/journal.pone.0183152
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183152
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183152&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0183152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heikkinen, Juha & Mäkipää, Raisa, 2010. "Testing hypotheses on shape and distribution of ecological response curves," Ecological Modelling, Elsevier, vol. 221(3), pages 388-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavão, D.C. & Elias, R.B. & Silva, L., 2019. "Comparison of discrete and continuum community models: Insights from numerical ecology and Bayesian methods applied to Azorean plant communities," Ecological Modelling, Elsevier, vol. 402(C), pages 93-106.
    2. Maggini, Ramona & Lehmann, Anthony & Kéry, Marc & Schmid, Hans & Beniston, Martin & Jenni, Lukas & Zbinden, Niklaus, 2011. "Are Swiss birds tracking climate change?," Ecological Modelling, Elsevier, vol. 222(1), pages 21-32.
    3. Bell, David M. & Schlaepfer, Daniel R., 2016. "On the dangers of model complexity without ecological justification in species distribution modeling," Ecological Modelling, Elsevier, vol. 330(C), pages 50-59.
    4. Boisson, Sylvain & Monty, Arnaud & Séleck, Maxime & Ngoy Shutcha, Mylor & Faucon, Michel-Pierre & Mahy, Grégory, 2020. "Ecological niche distribution along soil toxicity gradients: Bridging theoretical expectations and metallophyte conservation," Ecological Modelling, Elsevier, vol. 415(C).
    5. Citores, L. & Ibaibarriaga, L. & Lee, D.-J. & Brewer, M.J. & Santos, M. & Chust, G., 2020. "Modelling species presence–absence in the ecological niche theory framework using shape-constrained generalized additive models," Ecological Modelling, Elsevier, vol. 418(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0183152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.