IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0142238.html
   My bibliography  Save this article

Linear Augmentation for Stabilizing Stationary Solutions: Potential Pitfalls and Their Application

Author

Listed:
  • Rajat Karnatak

Abstract

Linear augmentation has recently been shown to be effective in targeting desired stationary solutions, suppressing bistablity, in regulating the dynamics of drive response systems and in controlling the dynamics of hidden attractors. The simplicity of the procedure is the main highlight of this scheme but questions related to its general applicability still need to be addressed. Focusing on the issue of targeting stationary solutions, this work demonstrates instances where the scheme fails to stabilize the required solutions and leads to other complicated dynamical scenarios. Examples from conservative as well as dissipative systems are presented in this regard and important applications in dissipative predator—prey systems are discussed, which include preventative measures to avoid potentially catastrophic dynamical transitions in these systems.

Suggested Citation

  • Rajat Karnatak, 2015. "Linear Augmentation for Stabilizing Stationary Solutions: Potential Pitfalls and Their Application," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-22, November.
  • Handle: RePEc:plo:pone00:0142238
    DOI: 10.1371/journal.pone.0142238
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142238
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0142238&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0142238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karnatak, Rajat & Ramaswamy, Ram & Feudel, Ulrike, 2014. "Conjugate coupling in ecosystems: Cross-predation stabilizes food webs," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 48-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Nannan & Zhang, Xuexue, 2023. "Impact of higher-order interactions on amplitude death of coupled oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    2. Biswas, Dhrubajyoti & Gupta, Sayan, 2024. "Symmetry-breaking higher-order interactions in coupled phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Chen, XinYue & Li, Fan & Liu, Shuai & Zou, Wei, 2023. "Emergent behavior of conjugate-coupled Stuart–Landau oscillators in directed star networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    4. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    5. Thounaojam, Umeshkanta Singh & Shrimali, Manish Dev, 2018. "Phase-flip in relay oscillators via linear augmentation," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 5-12.
    6. Chaurasia, Sudhanshu Shekhar & Choudhary, Anshul & Shrimali, Manish Dev & Sinha, Sudeshna, 2019. "Suppression and revival of oscillations through time-varying interaction," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 249-254.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0142238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.