IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0133896.html
   My bibliography  Save this article

Reduced Expression of TET1, TET2, TET3 and TDG mRNAs Are Associated with Poor Prognosis of Patients with Early Breast Cancer

Author

Listed:
  • Liu Yang
  • San-Jian Yu
  • Qi Hong
  • Yu Yang
  • Zhi-Ming Shao

Abstract

Purpose: The purpose of this study was to determine the prognostic role of ten eleven translocation (TET) family proteins and DNA glycosylase (TDG) in patients with early breast cancer (EBC). Methods: Expression of mRNAs encoding TET1–3 and TDG in 162 breast cancer tissues was quantified using real-time polymerase chain reaction analysis. The general characteristics of patients and clinicopathologic factors were collected. Estimation of patient survival was calculated using the Kaplan–Meier method, and independent prognostic indicators were analyzed using Cox regression analysis. Results: The level of TET1 mRNA was significantly related to overall survival (OS) (P = 0.022). Multivariate analysis shows that the TNM stage was an independent predictor of disease-free survival (DFS) (HR = 1.761, 95% CI: 1.124–2.761, P = 0.014) and OS (HR = 2.135, 95% CI: 1.070–4.263, P = 0.032). Further, in patients with EBC who were treated with anthracyclines, Kaplan–Meier analysis indicates that the levels of TET3 and TDG mRNAs were related to DFS (P = 0.026 and 0.030, respectively), and multivariate analysis reveals that high levels of TET3 (HR = 1.944, 95% CI: 1.029–3.672, P = 0.040) and TDG (HR = 2.178, 95% CI: 1.140–4.163, P = 0.018) mRNAs were independent indicators of favorable DFS. Conclusions: Our study indicates that EBC patients with decreased expression of TET1 mRNA had worse OS and that the levels of TET3 and TDG mRNAs were independent prognostic factors for patients who received anthracycline chemotherapy.

Suggested Citation

  • Liu Yang & San-Jian Yu & Qi Hong & Yu Yang & Zhi-Ming Shao, 2015. "Reduced Expression of TET1, TET2, TET3 and TDG mRNAs Are Associated with Poor Prognosis of Patients with Early Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0133896
    DOI: 10.1371/journal.pone.0133896
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133896
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0133896&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0133896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zachary D. Smith & Michelle M. Chan & Kathryn C. Humm & Rahul Karnik & Shila Mekhoubad & Aviv Regev & Kevin Eggan & Alexander Meissner, 2014. "DNA methylation dynamics of the human preimplantation embryo," Nature, Nature, vol. 511(7511), pages 611-615, July.
    2. Rahul M. Kohli & Yi Zhang, 2013. "TET enzymes, TDG and the dynamics of DNA demethylation," Nature, Nature, vol. 502(7472), pages 472-479, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Mueller & Gail Dennison & Shujun Liu, 2021. "An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality," IJERPH, MDPI, vol. 18(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Letizia Pitto & Francesca Gorini & Fabrizio Bianchi & Elena Guzzolino, 2020. "New Insights into Mechanisms of Endocrine-Disrupting Chemicals in Thyroid Diseases: The Epigenetic Way," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    2. Allegra Angeloni & Skye Fissette & Deniz Kaya & Jillian M. Hammond & Hasindu Gamaarachchi & Ira W. Deveson & Robert J. Klose & Weiming Li & Xiaotian Zhang & Ozren Bogdanovic, 2024. "Extensive DNA methylome rearrangement during early lamprey embryogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. John W. Oller & Christopher A. Shaw, 2019. "From Superficial Damage to Invasion of the Nucleosome: Ranking of Morbidities by the Biosemiotic Depth Hypothesis," International Journal of Sciences, Office ijSciences, vol. 8(06), pages 51-73, June.
    4. Steffen Mueller & Gail Dennison & Shujun Liu, 2021. "An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality," IJERPH, MDPI, vol. 18(13), pages 1-23, June.
    5. Jiří Kudrna & Marek Popov & František Hnilička & Marie Lhotská & Veronika Zemanová & Pavla Vachová & Jan Kubeš & Jana Česká & Barbora Tunklová, 2023. "Effects of Acetaminophen Contamination on 5-Methylcytosine Content in Zea mays and Plant Physiological Parameters," Agriculture, MDPI, vol. 13(7), pages 1-12, June.
    6. Simon D. Schwarz & Jianming Xu & Kapila Gunasekera & David Schürmann & Cathrine B. Vågbø & Elena Ferrari & Geir Slupphaug & Michael O. Hottiger & Primo Schär & Roland Steinacher, 2024. "Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Amadou Gaye & Gary H Gibbons & Charles Barry & Rakale Quarells & Sharon K Davis, 2017. "Influence of socioeconomic status on the whole blood transcriptome in African Americans," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    8. Denis Torre & Nancy J. Francoeur & Yael Kalma & Ilana Gross Carmel & Betsaida S. Melo & Gintaras Deikus & Kimaada Allette & Ron Flohr & Maya Fridrikh & Konstantinos Vlachos & Kent Madrid & Hardik Shah, 2023. "Isoform-resolved transcriptome of the human preimplantation embryo," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    9. Qing Li & Jiansen Lu & Xidi Yin & Yunjian Chang & Chao Wang & Meng Yan & Li Feng & Yanbo Cheng & Yun Gao & Beiying Xu & Yao Zhang & Yingyi Wang & Guizhong Cui & Luang Xu & Yidi Sun & Rong Zeng & Yixue, 2023. "Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0133896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.