IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126333.html
   My bibliography  Save this article

Bringing Statistics Up to Speed with Data in Analysis of Lymphocyte Motility

Author

Listed:
  • Kenneth Letendre
  • Emmanuel Donnadieu
  • Melanie E Moses
  • Judy L Cannon

Abstract

Two-photon (2P) microscopy provides immunologists with 3D video of the movement of lymphocytes in vivo. Motility parameters extracted from these videos allow detailed analysis of lymphocyte motility in lymph nodes and peripheral tissues. However, standard parametric statistical analyses such as the Student’s t-test are often used incorrectly, and fail to take into account confounds introduced by the experimental methods, potentially leading to erroneous conclusions about T cell motility. Here, we compare the motility of WT T cell versus PKCθ-/-, CARMA1-/-, CCR7-/-, and PTX-treated T cells. We show that the fluorescent dyes used to label T cells have significant effects on T cell motility, and we demonstrate the use of factorial ANOVA as a statistical tool that can control for these effects. In addition, researchers often choose between the use of “cell-based” parameters by averaging multiple steps of a single cell over time (e.g. cell mean speed), or “step-based” parameters, in which all steps of a cell population (e.g. instantaneous speed) are grouped without regard for the cell track. Using mixed model ANOVA, we show that we can maintain cell-based analyses without losing the statistical power of step-based data. We find that as we use additional levels of statistical control, we can more accurately estimate the speed of T cells as they move in lymph nodes as well as measure the impact of individual signaling molecules on T cell motility. As there is increasing interest in using computational modeling to understand T cell behavior in in vivo, these quantitative measures not only give us a better determination of actual T cell movement, they may prove crucial for models to generate accurate predictions about T cell behavior.

Suggested Citation

  • Kenneth Letendre & Emmanuel Donnadieu & Melanie E Moses & Judy L Cannon, 2015. "Bringing Statistics Up to Speed with Data in Analysis of Lymphocyte Motility," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0126333
    DOI: 10.1371/journal.pone.0126333
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126333
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126333&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thorsten R. Mempel & Sarah E. Henrickson & Ulrich H. von Andrian, 2004. "T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases," Nature, Nature, vol. 427(6970), pages 154-159, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G Matthew Fricke & Kenneth A Letendre & Melanie E Moses & Judy L Cannon, 2016. "Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian J Schmidt & Jason A Papin & Michael B Lawrence, 2009. "Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-19, December.
    2. Fan Xia & Cheng-Rui Qian & Zhou Xun & Yannick Hamon & Anne-Marie Sartre & Anthony Formisano & Sébastien Mailfert & Marie-Claire Phelipot & Cyrille Billaudeau & Sébastien Jaeger & Jacques Nunès & Xiao-, 2018. "TCR and CD28 Concomitant Stimulation Elicits a Distinctive Calcium Response in Naive T Cells," Post-Print hal-02084941, HAL.
    3. Frederik Graw & Roland R Regoes, 2009. "Investigating CTL Mediated Killing with a 3D Cellular Automaton," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-12, August.
    4. G Matthew Fricke & Kenneth A Letendre & Melanie E Moses & Judy L Cannon, 2016. "Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-23, March.
    5. Hong Sheng Quah & Elaine Yiqun Cao & Lisda Suteja & Constance H. Li & Hui Sun Leong & Fui Teen Chong & Shilpi Gupta & Camille Arcinas & John F. Ouyang & Vivian Ang & Teja Celhar & Yunqian Zhao & Hui C, 2023. "Single cell analysis in head and neck cancer reveals potential immune evasion mechanisms during early metastasis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Frederic Geissmann & Thomas O Cameron & Stephane Sidobre & Natasha Manlongat & Mitchell Kronenberg & Michael J Briskin & Michael L Dustin & Dan R Littman, 2005. "Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, April.
    7. Elisabeth H. Vollmann & Kristin Rattay & Olga Barreiro & Aude Thiriot & Rebecca A. Fuhlbrigge & Vladimir Vrbanac & Ki-Wook Kim & Steffen Jung & Andrew M. Tager & Ulrich H. von Andrian, 2021. "Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    8. Renske M A Vroomans & Athanasius F M Marée & Rob J de Boer & Joost B Beltman, 2012. "Chemotactic Migration of T Cells towards Dendritic Cells Promotes the Detection of Rare Antigens," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-13, November.
    9. Edward J Banigan & Tajie H Harris & David A Christian & Christopher A Hunter & Andrea J Liu, 2015. "Heterogeneous CD8+ T Cell Migration in the Lymph Node in the Absence of Inflammation Revealed by Quantitative Migration Analysis," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    10. Colleen M Witt & Subhadip Raychaudhuri & Brian Schaefer & Arup K Chakraborty & Ellen A Robey, 2005. "Directed Migration of Positively Selected Thymocytes Visualized in Real Time," PLOS Biology, Public Library of Science, vol. 3(6), pages 1-1, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.