IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0113684.html
   My bibliography  Save this article

Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases

Author

Listed:
  • Diana Chang
  • Feng Gao
  • Andrea Slavney
  • Li Ma
  • Yedael Y Waldman
  • Aaron J Sams
  • Paul Billing-Ross
  • Aviv Madar
  • Richard Spritz
  • Alon Keinan

Abstract

Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS). We present tailored analytical methods and software that facilitate X-wide association studies (XWAS), which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID). We associated several X-linked genes with disease risk, among which (1) ARHGEF6 is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD). Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2) CENPI is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3) We replicated a previous association of FOXP3, a transcription factor that regulates T-cell development and function, with vitiligo; and (4) we discovered that C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies.

Suggested Citation

  • Diana Chang & Feng Gao & Andrea Slavney & Li Ma & Yedael Y Waldman & Aaron J Sams & Paul Billing-Ross & Aviv Madar & Richard Spritz & Alon Keinan, 2014. "Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-31, December.
  • Handle: RePEc:plo:pone00:0113684
    DOI: 10.1371/journal.pone.0113684
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113684
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0113684&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0113684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li Ma & Andrew G Clark & Alon Keinan, 2013. "Gene-Based Testing of Interactions in Association Studies of Quantitative Traits," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-12, February.
    2. Laura Carrel & Huntington F. Willard, 2005. "X-inactivation profile reveals extensive variability in X-linked gene expression in females," Nature, Nature, vol. 434(7031), pages 400-404, March.
    3. Brendan Maher, 2008. "Personal genomes: The case of the missing heritability," Nature, Nature, vol. 456(7218), pages 18-21, November.
    4. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7219), pages 274-274, November.
    5. John Novembre & Toby Johnson & Katarzyna Bryc & Zoltán Kutalik & Adam R. Boyko & Adam Auton & Amit Indap & Karen S. King & Sven Bergmann & Matthew R. Nelson & Matthew Stephens & Carlos D. Bustamante, 2008. "Genes mirror geography within Europe," Nature, Nature, vol. 456(7218), pages 98-101, November.
    6. Bryan N Howie & Peter Donnelly & Jonathan Marchini, 2009. "A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 5(6), pages 1-15, June.
    7. Taru Tukiainen & Matti Pirinen & Antti-Pekka Sarin & Claes Ladenvall & Johannes Kettunen & Terho Lehtimäki & Marja-Liisa Lokki & Markus Perola & Juha Sinisalo & Efthymia Vlachopoulou & Johan G Eriksso, 2014. "Chromosome X-Wide Association Study Identifies Loci for Fasting Insulin and Height and Evidence for Incomplete Dosage Compensation," PLOS Genetics, Public Library of Science, vol. 10(2), pages 1-12, February.
    8. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    9. Tongzhong Ju & Richard D. Cummings, 2005. "Chaperone mutation in Tn syndrome," Nature, Nature, vol. 437(7063), pages 1252-1252, October.
    10. Hailiang Huang & Pritam Chanda & Alvaro Alonso & Joel S Bader & Dan E Arking, 2011. "Gene-Based Tests of Association," PLOS Genetics, Public Library of Science, vol. 7(7), pages 1-15, July.
    11. Diana Chang & Alon Keinan, 2014. "Principal Component Analysis Characterizes Shared Pathogenetics from Genome-Wide Association Studies," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Gu & Rui-Kun Peng & Chun-Ling Guo & Meng Zhang & Jie Yang & Xiao Yan & Qian Zhou & Hongwei Li & Na Wang & Jinwei Zhu & Qin Ouyang, 2022. "Construction of a synthetic methodology-based library and its application in identifying a GIT/PIX protein–protein interaction inhibitor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Hao, Meiling & Zhao, Xingqiu & Xu, Wei, 2020. "Competing risk modeling and testing for X-chromosome genetic association," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily Mathieu, 2016. "AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(2), pages 151-171, April.
    2. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    3. Pierre Luisi & Angelina García & Juan Manuel Berros & Josefina M B Motti & Darío A Demarchi & Emma Alfaro & Eliana Aquilano & Carina Argüelles & Sergio Avena & Graciela Bailliet & Julieta Beltramo & C, 2020. "Fine-scale genomic analyses of admixed individuals reveal unrecognized genetic ancestry components in Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-30, July.
    4. Gad Abraham & Michael Inouye, 2014. "Fast Principal Component Analysis of Large-Scale Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    5. Diana Chang & Alon Keinan, 2014. "Principal Component Analysis Characterizes Shared Pathogenetics from Genome-Wide Association Studies," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    6. Bryc, Katarzyna & Bryc, Wlodek & Silverstein, Jack W., 2013. "Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 34-43.
    7. Gil McVean, 2009. "A Genealogical Interpretation of Principal Components Analysis," PLOS Genetics, Public Library of Science, vol. 5(10), pages 1-10, October.
    8. Guindon, Stéphane & Guo, Hongbin & Welch, David, 2016. "Demographic inference under the coalescent in a spatial continuum," Theoretical Population Biology, Elsevier, vol. 111(C), pages 43-50.
    9. Marie-Claude Babron & Marie de Tayrac & Douglas N Rutledge & Eleftheria Zeggini & Emmanuelle Génin, 2012. "Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    10. Priya Moorjani & Nick Patterson & Joel N Hirschhorn & Alon Keinan & Li Hao & Gil Atzmon & Edward Burns & Harry Ostrer & Alkes L Price & David Reich, 2011. "The History of African Gene Flow into Southern Europeans, Levantines, and Jews," PLOS Genetics, Public Library of Science, vol. 7(4), pages 1-13, April.
    11. Wang Chaolong & Szpiech Zachary A & Degnan James H & Jakobsson Mattias & Pemberton Trevor J & Hardy John A & Singleton Andrew B & Rosenberg Noah A, 2010. "Comparing Spatial Maps of Human Population-Genetic Variation Using Procrustes Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-22, January.
    12. Thomas Charlon & Manuel Martínez-Bueno & Lara Bossini-Castillo & F David Carmona & Alessandro Di Cara & Jérôme Wojcik & Sviatoslav Voloshynovskiy & Javier Martín & Marta E Alarcón-Riquelme, 2016. "Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-10, August.
    13. Duforet-Frebourg, Nicolas & Slatkin, Montgomery, 2016. "Isolation-by-distance-and-time in a stepping-stone model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 24-35.
    14. Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.
    15. Thalida E Arpawong & Neil Pendleton & Krisztina Mekli & John J McArdle & Margaret Gatz & Chris Armoskus & James A Knowles & Carol A Prescott, 2017. "Genetic variants specific to aging-related verbal memory: Insights from GWASs in a population-based cohort," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-27, August.
    16. Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
    17. Zheng, Xiuwen & Weir, Bruce S., 2016. "Eigenanalysis of SNP data with an identity by descent interpretation," Theoretical Population Biology, Elsevier, vol. 107(C), pages 65-76.
    18. Jason Sawler & Bruce Reisch & Mallikarjuna K Aradhya & Bernard Prins & Gan-Yuan Zhong & Heidi Schwaninger & Charles Simon & Edward Buckler & Sean Myles, 2013. "Genomics Assisted Ancestry Deconvolution in Grape," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    19. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    20. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0113684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.