IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0105832.html
   My bibliography  Save this article

Dysbalance of Astrocyte Calcium under Hyperammonemic Conditions

Author

Listed:
  • Nicole Haack
  • Pavel Dublin
  • Christine R Rose

Abstract

Increased brain ammonium (NH4+/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4+/NH3, developed within 10–20 minutes and was maintained as long as the NH4+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE.

Suggested Citation

  • Nicole Haack & Pavel Dublin & Christine R Rose, 2014. "Dysbalance of Astrocyte Calcium under Hyperammonemic Conditions," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
  • Handle: RePEc:plo:pone00:0105832
    DOI: 10.1371/journal.pone.0105832
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105832
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0105832&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0105832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Attwell & Alastair M. Buchan & Serge Charpak & Martin Lauritzen & Brian A. MacVicar & Eric A. Newman, 2010. "Glial and neuronal control of brain blood flow," Nature, Nature, vol. 468(7321), pages 232-243, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shashank Shekhar & Shaoxun Wang & Paige N Mims & Ezekiel Gonzalez-Fernandez & Chao Zhang & Xiaochen He & Catherine Y Liu & Wenshan Lv & Yangang Wang & Juebin Huang & Fan Fan, 2017. "Impaired Cerebral Autoregulation-A Common Neurovascular Pathway in Diabetes may Play a Critical Role in Diabetes-Related Alzheimers Disease," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 2(3), pages 40-45, June.
    2. William A. Mills & AnnaLin M. Woo & Shan Jiang & Joelle Martin & Dayana Surendran & Matthew Bergstresser & Ian F. Kimbrough & Ukpong B. Eyo & Michael V. Sofroniew & Harald Sontheimer, 2022. "Astrocyte plasticity in mice ensures continued endfoot coverage of cerebral blood vessels following injury and declines with age," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Domenic H. Cerri & Daniel L. Albaugh & Lindsay R. Walton & Brittany Katz & Tzu-Wen Wang & Tzu-Hao Harry Chao & Weiting Zhang & Randal J. Nonneman & Jing Jiang & Sung-Ho Lee & Amit Etkin & Catherine N., 2024. "Distinct neurochemical influences on fMRI response polarity in the striatum," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    4. E. J. Mathias & M. J. Plank & T. David, 2017. "A model of neurovascular coupling and the BOLD response PART II," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 20(5), pages 519-529, April.
    5. Shashank Shekhar & Shaoxun Wang & Paige N Mims & Ezekiel Gonzalez-Fernandez & Chao Zhang & Xiaochen He & Catherine Y Liu & Wenshan Lv & Yangang Wang & Juebin Huang & Fan Fan, 2017. "Impaired Cerebral Autoregulation-A Common Neurovascular Pathway in Diabetes may Play a Critical Role in Diabetes-Related Alzheimer’s Disease," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 2(3), pages 1-6, June.
    6. Yu, Yangyang & Yuan, Zhixuan & Li, Jiajia & Wu, Ying, 2023. "Dynamic analysis of epileptic seizures caused by energy failure after ischemic stroke," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Rita Gil & Mafalda Valente & Noam Shemesh, 2024. "Rat superior colliculus encodes the transition between static and dynamic vision modes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Patrick S. Hosford & Jack A. Wells & Shereen Nizari & Isabel N. Christie & Shefeeq M. Theparambil & Pablo A. Castro & Anna Hadjihambi & L. Felipe Barros & Iván Ruminot & Mark F. Lythgoe & Alexander V., 2022. "CO2 signaling mediates neurovascular coupling in the cerebral cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0105832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.