IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0098372.html
   My bibliography  Save this article

Maximal Sum of Metabolic Exchange Fluxes Outperforms Biomass Yield as a Predictor of Growth Rate of Microorganisms

Author

Listed:
  • Raphy Zarecki
  • Matthew A Oberhardt
  • Keren Yizhak
  • Allon Wagner
  • Ella Shtifman Segal
  • Shiri Freilich
  • Christopher S Henry
  • Uri Gophna
  • Eytan Ruppin

Abstract

Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth.

Suggested Citation

  • Raphy Zarecki & Matthew A Oberhardt & Keren Yizhak & Allon Wagner & Ella Shtifman Segal & Shiri Freilich & Christopher S Henry & Uri Gophna & Eytan Ruppin, 2014. "Maximal Sum of Metabolic Exchange Fluxes Outperforms Biomass Yield as a Predictor of Growth Rate of Microorganisms," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
  • Handle: RePEc:plo:pone00:0098372
    DOI: 10.1371/journal.pone.0098372
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098372
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0098372&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0098372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua A. Lerman & Daniel R. Hyduke & Haythem Latif & Vasiliy A. Portnoy & Nathan E. Lewis & Jeffrey D. Orth & Alexandra C. Schrimpe-Rutledge & Richard D. Smith & Joshua N. Adkins & Karsten Zengler & , 2012. "In silico method for modelling metabolism and gene product expression at genome scale," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Leng & Yinzhao Wang & Weishu Zhao & Stefan M. Sievert & Xiang Xiao, 2023. "Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Ambros M. Gleixner & Daniel E. Steffy & Kati Wolter, 2016. "Iterative Refinement for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 449-464, August.
    3. Alexander Kroll & Yvan Rousset & Xiao-Pan Hu & Nina A. Liebrand & Martin J. Lercher, 2023. "Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Iván Domenzain & Benjamín Sánchez & Mihail Anton & Eduard J. Kerkhoven & Aarón Millán-Oropeza & Céline Henry & Verena Siewers & John P. Morrissey & Nikolaus Sonnenschein & Jens Nielsen, 2022. "Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Christian Schulz & Tjasa Kumelj & Emil Karlsen & Eivind Almaas, 2021. "Genome-scale metabolic modelling when changes in environmental conditions affect biomass composition," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-22, May.
    6. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.
    7. Guido Zampieri & Supreeta Vijayakumar & Elisabeth Yaneske & Claudio Angione, 2019. "Machine and deep learning meet genome-scale metabolic modeling," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-24, July.
    8. Philipp Wendering & Marius Arend & Zahra Razaghi-Moghadam & Zoran Nikoloski, 2023. "Data integration across conditions improves turnover number estimates and metabolic predictions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0098372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.