IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39840-4.html
   My bibliography  Save this article

Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning

Author

Listed:
  • Alexander Kroll

    (Heinrich Heine University)

  • Yvan Rousset

    (Heinrich Heine University)

  • Xiao-Pan Hu

    (Heinrich Heine University)

  • Nina A. Liebrand

    (Heinrich Heine University)

  • Martin J. Lercher

    (Heinrich Heine University)

Abstract

The turnover number kcat, a measure of enzyme efficiency, is central to understanding cellular physiology and resource allocation. As experimental kcat estimates are unavailable for the vast majority of enzymatic reactions, the development of accurate computational prediction methods is highly desirable. However, existing machine learning models are limited to a single, well-studied organism, or they provide inaccurate predictions except for enzymes that are highly similar to proteins in the training set. Here, we present TurNuP, a general and organism-independent model that successfully predicts turnover numbers for natural reactions of wild-type enzymes. We constructed model inputs by representing complete chemical reactions through differential reaction fingerprints and by representing enzymes through a modified and re-trained Transformer Network model for protein sequences. TurNuP outperforms previous models and generalizes well even to enzymes that are not similar to proteins in the training set. Parameterizing metabolic models with TurNuP-predicted kcat values leads to improved proteome allocation predictions. To provide a powerful and convenient tool for the study of molecular biochemistry and physiology, we implemented a TurNuP web server.

Suggested Citation

  • Alexander Kroll & Yvan Rousset & Xiao-Pan Hu & Nina A. Liebrand & Martin J. Lercher, 2023. "Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39840-4
    DOI: 10.1038/s41467-023-39840-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39840-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39840-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Kroll & Martin K M Engqvist & David Heckmann & Martin J Lercher, 2021. "Deep learning allows genome-scale prediction of Michaelis constants from structural features," PLOS Biology, Public Library of Science, vol. 19(10), pages 1-21, October.
    2. Hugo Dourado & Martin J. Lercher, 2020. "An analytical theory of balanced cellular growth," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. David Heckmann & Colton J. Lloyd & Nathan Mih & Yuanchi Ha & Daniel C. Zielinski & Zachary B. Haiman & Abdelmoneim Amer Desouki & Martin J. Lercher & Bernhard O. Palsson, 2018. "Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Ali Ebrahim & Elizabeth Brunk & Justin Tan & Edward J. O'Brien & Donghyuk Kim & Richard Szubin & Joshua A. Lerman & Anna Lechner & Anand Sastry & Aarash Bordbar & Adam M. Feist & Bernhard O. Palsson, 2016. "Multi-omic data integration enables discovery of hidden biological regularities," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    5. Joshua A. Lerman & Daniel R. Hyduke & Haythem Latif & Vasiliy A. Portnoy & Nathan E. Lewis & Jeffrey D. Orth & Alexandra C. Schrimpe-Rutledge & Richard D. Smith & Joshua N. Adkins & Karsten Zengler & , 2012. "In silico method for modelling metabolism and gene product expression at genome scale," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
    6. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Tyler W. Doughty & Iván Domenzain & Aaron Millan-Oropeza & Noemi Montini & Philip A. Groot & Rui Pereira & Jens Nielsen & Céline Henry & Jean-Marc G. Daran & Verena Siewers & John P. Morrissey, 2020. "Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido Zampieri & Supreeta Vijayakumar & Elisabeth Yaneske & Claudio Angione, 2019. "Machine and deep learning meet genome-scale metabolic modeling," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-24, July.
    2. Iván Domenzain & Benjamín Sánchez & Mihail Anton & Eduard J. Kerkhoven & Aarón Millán-Oropeza & Céline Henry & Verena Siewers & John P. Morrissey & Nikolaus Sonnenschein & Jens Nielsen, 2022. "Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Philipp Wendering & Marius Arend & Zahra Razaghi-Moghadam & Zoran Nikoloski, 2023. "Data integration across conditions improves turnover number estimates and metabolic predictions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Han Yu & Huaxiang Deng & Jiahui He & Jay D. Keasling & Xiaozhou Luo, 2023. "UniKP: a unified framework for the prediction of enzyme kinetic parameters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Gi Bae Kim & Ji Yeon Kim & Jong An Lee & Charles J. Norsigian & Bernhard O. Palsson & Sang Yup Lee, 2023. "Functional annotation of enzyme-encoding genes using deep learning with transformer layers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Hao Leng & Yinzhao Wang & Weishu Zhao & Stefan M. Sievert & Xiang Xiao, 2023. "Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Ambros M. Gleixner & Daniel E. Steffy & Kati Wolter, 2016. "Iterative Refinement for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 449-464, August.
    9. Matteo Mori & Chuankai Cheng & Brian R. Taylor & Hiroyuki Okano & Terence Hwa, 2023. "Functional decomposition of metabolism allows a system-level quantification of fluxes and protein allocation towards specific metabolic functions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Christian Schulz & Tjasa Kumelj & Emil Karlsen & Eivind Almaas, 2021. "Genome-scale metabolic modelling when changes in environmental conditions affect biomass composition," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-22, May.
    11. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.
    12. Gaoyang Li & Li Liu & Wei Du & Huansheng Cao, 2023. "Local flux coordination and global gene expression regulation in metabolic modeling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39840-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.