IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0097447.html
   My bibliography  Save this article

The Trade-Off between Spatial and Temporal Variabilities in Reciprocal Upper-Limb Aiming Movements of Different Durations

Author

Listed:
  • Frederic Danion
  • Raoul M Bongers
  • Reinoud J Bootsma

Abstract

The spatial and temporal aspects of movement variability have typically been studied separately. As a result the relationship between spatial and temporal variabilities remains largely unknown. In two experiments we examined the evolution and covariation of spatial and temporal variabilities over variations in the duration of reciprocal aiming movements. Experiments differed in settings: In Experiment 1 participants moved unperturbed whereas in Experiment 2 they were confronted with an elastic force field. Different movement durations—for a constant inter-target distance—were either evoked by imposing spatial accuracy constraints while requiring participants to move as fast as possible, or prescribed by means of an auditory metronome while requiring participants to maximize spatial accuracy. Analyses focused on absolute and relative variabilities, respectively captured by the standard deviation (SD) and the coefficient of variation (CV = SD/mean). Spatial variability (both SDspace and CVspace) decreased with movement duration, while temporal variability (both SDtime and CVtime) increased with movement duration. We found strong negative correlations between spatial and temporal variabilities over variations in movement duration, whether the variability examined was absolute or relative. These findings observed at the level of the full movement contrasted with the findings observed at the level of the separate acceleration and deceleration phases of movement. During the separate acceleration and deceleration phases both spatial and temporal variabilities (SD and CV) were found to increase with their respective durations, leading to positive correlations between them. Moreover, variability was generally larger at the level of the constituent movement phases than at the level of the full movement. The general pattern of results was robust, as it emerged in both tasks in each of the two experiments. We conclude that feedback mechanisms operating to maximize task performance are subjected to a form of competition between spatial and temporal variabilities.

Suggested Citation

  • Frederic Danion & Raoul M Bongers & Reinoud J Bootsma, 2014. "The Trade-Off between Spatial and Temporal Variabilities in Reciprocal Upper-Limb Aiming Movements of Different Durations," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
  • Handle: RePEc:plo:pone00:0097447
    DOI: 10.1371/journal.pone.0097447
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097447
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0097447&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0097447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher M. Harris & Daniel M. Wolpert, 1998. "Signal-dependent noise determines motor planning," Nature, Nature, vol. 394(6695), pages 780-784, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shogo Yonekura & Yasuo Kuniyoshi, 2017. "Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    2. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    3. Max Berniker & Megan K O’Brien & Konrad P Kording & Alaa A Ahmed, 2013. "An Examination of the Generalizability of Motor Costs," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    4. Lionel Rigoux & Emmanuel Guigon, 2012. "A Model of Reward- and Effort-Based Optimal Decision Making and Motor Control," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-13, October.
    5. Yanhao Ren & Qiang Luo & Wenlian Lu, 2023. "Synchronization Analysis of Linearly Coupled Systems with Signal-Dependent Noises," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    6. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    8. repec:plo:pcbi00:1002843 is not listed on IDEAS
    9. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    10. repec:plo:pone00:0226596 is not listed on IDEAS
    11. Julian J Tramper & Bart van den Broek & Wim Wiegerinck & Hilbert J Kappen & Stan Gielen, 2012. "Time-Integrated Position Error Accounts for Sensorimotor Behavior in Time-Constrained Tasks," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    12. Konrad P Körding & Izumi Fukunaga & Ian S Howard & James N Ingram & Daniel M Wolpert, 2004. "A Neuroeconomics Approach to Inferring Utility Functions in Sensorimotor Control," PLOS Biology, Public Library of Science, vol. 2(10), pages 1-1, September.
    13. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    14. Bastien Berret & Frédéric Jean, 2020. "Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-28, February.
    15. H H L M Goossens & A J van Opstal, 2012. "Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-18, May.
    16. Michael Sherback & Francisco J Valero-Cuevas & Raffaello D'Andrea, 2010. "Slower Visuomotor Corrections with Unchanged Latency are Consistent with Optimal Adaptation to Increased Endogenous Noise in the Elderly," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-13, March.
    17. Bastien Berret & Adrien Conessa & Nicolas Schweighofer & Etienne Burdet, 2021. "Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-24, June.
    18. Nadav S Bar & Sigurd Skogestad & Jose M Marçal & Nachum Ulanovsky & Yossi Yovel, 2015. "A Sensory-Motor Control Model of Animal Flight Explains Why Bats Fly Differently in Light Versus Dark," PLOS Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    19. Paolo Tommasino & Antonella Maselli & Domenico Campolo & Francesco Lacquaniti & Andrea d’Avella, 2021. "A Hessian-based decomposition characterizes how performance in complex motor skills depends on individual strategy and variability," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-32, June.
    20. Joshua G A Cashaback & Heather R McGregor & Ayman Mohatarem & Paul L Gribble, 2017. "Dissociating error-based and reinforcement-based loss functions during sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-28, July.
    21. Jonathan B Dingwell & Joby John & Joseph P Cusumano, 2010. "Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    22. Qiang Luo & Tian Ge & Fabian Grabenhorst & Jianfeng Feng & Edmund T Rolls, 2013. "Attention-Dependent Modulation of Cortical Taste Circuits Revealed by Granger Causality with Signal-Dependent Noise," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-15, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0097447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.