IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082051.html
   My bibliography  Save this article

Synaptic Symmetry Increases Coherence in a Pair of Excitable Electronic Neurons

Author

Listed:
  • Bruno N S Medeiros
  • Mauro Copelli

Abstract

We study how the synaptic connections in a pair of excitable electronic neurons affect the coherence of their spike trains when the neurons are submitted to noise from independent sources. The coupling is provided by electronic circuits which mimic the dynamics of chemical AMPA synapses. In particular, we show that increasing the strength of an unidirectional synapse leads to a decrease of coherence in the post-synaptic neuron. More interestingly, we show that the decrease of coherence can be reverted if we add a synapse of sufficient strength in the reverse direction. Synaptic symmetry plays an important role in this process and, under the right choice of parameters, increases the network coherence beyond the value achieved at the resonance due to noise alone in uncoupled neurons. We also show that synapses with a longer time scale sharpen the dependency of the coherence on the synaptic symmetry. The results were reproduced by numerical simulations of a pair of synaptically coupled FitzHugh-Nagumo models.

Suggested Citation

  • Bruno N S Medeiros & Mauro Copelli, 2013. "Synaptic Symmetry Increases Coherence in a Pair of Excitable Electronic Neurons," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
  • Handle: RePEc:plo:pone00:0082051
    DOI: 10.1371/journal.pone.0082051
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082051
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082051&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Donges & H. Schultz & N. Marwan & Y. Zou & J. Kurths, 2011. "Investigating the topology of interacting networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 635-651, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heloisa Ruivo & Gilvan Sampaio & Fernando M. Ramos, 2014. "Knowledge extraction from large climatological data sets using a genome-wide analysis approach: application to the 2005 and 2010 Amazon droughts," Climatic Change, Springer, vol. 124(1), pages 347-361, May.
    2. Shekhtman, Louis M. & Danziger, Michael M. & Havlin, Shlomo, 2016. "Recent advances on failure and recovery in networks of networks," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 28-36.
    3. Huang, Wei-Qiang & Liu, Peipei, 2023. "Cross-market risk spillovers among sovereign CDS, stock, foreign exchange and commodity markets: An interacting network perspective," International Review of Financial Analysis, Elsevier, vol. 90(C).
    4. Hiromitsu Goto & Wataru Souma & Mari Jibu & Yuichi Ikeda, 2020. "Multilayer Network Analysis of the Drug Pipeline in the Global Pharmaceutical Industry," Papers 2003.04620, arXiv.org.
    5. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    6. Zhou, Yinzuo & Zhou, Jie, 2018. "Algorithm for multiplex network generation with shared links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 945-954.
    7. Julian Maluck & Reik V Donner, 2015. "A Network of Networks Perspective on Global Trade," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-24, July.
    8. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.