IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0078624.html
   My bibliography  Save this article

iSubgraph: Integrative Genomics for Subgroup Discovery in Hepatocellular Carcinoma Using Graph Mining and Mixture Models

Author

Listed:
  • Bahadir Ozdemir
  • Wael Abd-Almageed
  • Stephanie Roessler
  • Xin Wei Wang

Abstract

The high tumor heterogeneity makes it very challenging to identify key tumorigenic pathways as therapeutic targets. The integration of multiple omics data is a promising approach to identify driving regulatory networks in patient subgroups. Here, we propose a novel conceptual framework to discover patterns of miRNA-gene networks, observed frequently up- or down-regulated in a group of patients and to use such networks for patient stratification in hepatocellular carcinoma (HCC). We developed an integrative subgraph mining approach, called iSubgraph, and identified altered regulatory networks frequently observed in HCC patients. The miRNA and gene expression profiles were jointly analyzed in a graph structure. We defined a method to transform microarray data into graph representation that encodes miRNA and gene expression levels and the interactions between them as well. The iSubgraph algorithm was capable to detect cooperative regulation of miRNAs and genes even if it occurred only in some patients. Next, the miRNA-mRNA modules were used in an unsupervised class prediction model to discover HCC subgroups via patient clustering by mixture models. The robustness analysis of the mixture model showed that the class predictions are highly stable. Moreover, the Kaplan-Meier survival analysis revealed that the HCC subgroups identified by the algorithm have different survival characteristics. The pathway analyses of the miRNA-mRNA co-modules identified by the algorithm demonstrate key roles of Myc, E2F1, let-7, TGFB1, TNF and EGFR in HCC subgroups. Thus, our method can integrate various omics data derived from different platforms and with different dynamic scales to better define molecular tumor subtypes. iSubgraph is available as MATLAB code at http://www.cs.umd.edu/~ozdemir/isubgraph/.

Suggested Citation

  • Bahadir Ozdemir & Wael Abd-Almageed & Stephanie Roessler & Xin Wei Wang, 2013. "iSubgraph: Integrative Genomics for Subgroup Discovery in Hepatocellular Carcinoma Using Graph Mining and Mixture Models," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-16, November.
  • Handle: RePEc:plo:pone00:0078624
    DOI: 10.1371/journal.pone.0078624
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078624
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0078624&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0078624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Huili Guo & Nicholas T. Ingolia & Jonathan S. Weissman & David P. Bartel, 2010. "Mammalian microRNAs predominantly act to decrease target mRNA levels," Nature, Nature, vol. 466(7308), pages 835-840, August.
    3. Amaia Lujambio & Scott W. Lowe, 2012. "The microcosmos of cancer," Nature, Nature, vol. 482(7385), pages 347-355, February.
    4. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miriam Aparicio, 2021. "Resiliency and Cooperation or Regarding Social and Collective Competencies for University Achievement. An Analysis from a Systemic Perspective," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, ejser_v8_.
    2. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    3. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    4. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    5. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    6. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    7. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    8. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    9. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    10. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    11. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    12. Yue Wan & Jialu Wu & Tingjun Hou & Chang-Yu Hsieh & Xiaowei Jia, 2025. "Multi-channel learning for integrating structural hierarchies into context-dependent molecular representation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    14. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.
    15. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    16. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    17. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    18. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    19. Carleo, Alessandra & Rocci, Roberto, 2024. "Functional clustering of NPLs recovery curves," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    20. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0078624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.