IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0075487.html
   My bibliography  Save this article

Joint Modeling of Transitional Patterns of Alzheimer's Disease

Author

Listed:
  • Wei Liu
  • Bo Zhang
  • Zhiwei Zhang
  • Xiao-Hua Zhou

Abstract

While the experimental Alzheimer's drugs recently developed by pharmaceutical companies failed to stop the progression of Alzheimer's disease, clinicians strive to seek clues on how the patients would be when they visit back next year, based upon the patients' current clinical and neuropathologic diagnosis results. This is related to how to precisely identify the transitional patterns of Alzheimer's disease. Due to the complexities of the diagnosis of Alzheimer's disease, the condition of the disease is usually characterized by multiple clinical and neuropathologic measurements, including Clinical Dementia Rating (CDRGLOB), Mini-Mental State Examination (MMSE), a score derived from the clinician judgement on neuropsychological tests (COGSTAT), and Functional Activities Questionnaire (FAQ). In this research article, we investigate a class of novel joint random-effects transition models that are used to simultaneously analyze the transitional patterns of multiple primary measurements of Alzheimer's disease and, at the same time, account for the association between the measurements. The proposed methodology can avoid the bias introduced by ignoring the correlation between primary measurements and can predict subject-specific transitional patterns.

Suggested Citation

  • Wei Liu & Bo Zhang & Zhiwei Zhang & Xiao-Hua Zhou, 2013. "Joint Modeling of Transitional Patterns of Alzheimer's Disease," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-11, September.
  • Handle: RePEc:plo:pone00:0075487
    DOI: 10.1371/journal.pone.0075487
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0075487
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0075487&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0075487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keunbaik Lee & Michael J. Daniels, 2007. "A Class of Markov Models for Longitudinal Ordinal Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1060-1067, December.
    2. Paul S. Albert & Dean A. Follmann, 2003. "A Random Effects Transition Model For Longitudinal Binary Data With Informative Missingness," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 100-111, February.
    3. Paul S. Albert, 2000. "A Transitional Model for Longitudinal Binary Data Subject to Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 56(2), pages 602-608, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardo Van Den Hout & Fiona E. Matthews, 2010. "Estimating stroke‐free and total life expectancy in the presence of non‐ignorable missing values," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 331-349, April.
    2. Eugenia Buta & Stephanie S. O’Malley & Ralitza Gueorguieva, 2018. "Bayesian joint modelling of longitudinal data on abstinence, frequency and intensity of drinking in alcoholism trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 869-888, June.
    3. Mark Rooij, 2018. "Transitional modeling of experimental longitudinal data with missing values," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 107-130, March.
    4. Xie, Hui, 2012. "Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1287-1300.
    5. Pei Wang & Erin L. Abner & Changrui Liu & David W. Fardo & Frederick A. Schmitt & Gregory A. Jicha & Linda J. Van Eldik & Richard J. Kryscio, 2023. "Estimating random effects in a finite Markov chain with absorbing states: Application to cognitive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 304-321, August.
    6. Melody S. Goodman & Yi Li & Anne M. Stoddard & Glorian Sorensen, 2014. "Analysis of ordinal outcomes with longitudinal covariates subject to missingness," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 1040-1052, May.
    7. Sarah Brown & Pulak Ghosh & Karl Taylor, 2012. "The Existence and Persistence of Household Financial Hardship," Working Papers 2012022, The University of Sheffield, Department of Economics.
    8. Wei, Shaoceng & Xu, Liou & Kryscio, Richard J., 2014. "Markov transition model to dementia with death as a competing event," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 78-88.
    9. Rana, Subrata & Roy, Surupa & Das, Kalyan, 2018. "Analysis of ordinal longitudinal data under nonignorable missingness and misreporting: An application to Alzheimer’s disease study," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 62-77.
    10. Lee, Keunbaik & Sohn, Insuk & Kim, Donguk, 2016. "Analysis of long series of longitudinal ordinal data using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 363-371.
    11. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre & Yves Vanrenterghem, 2008. "A Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with Excess Zeros," Biometrics, The International Biometric Society, vol. 64(2), pages 611-619, June.
    12. Shanshan Li, 2016. "Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 145-160, January.
    13. Lee, Keunbaik & Joo, Yongsung, 2019. "Marginalized models for longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 47-58.
    14. Francesco Bartolucci & Alessio Farcomeni, 2015. "A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates," Biometrics, The International Biometric Society, vol. 71(1), pages 80-89, March.
    15. Lin, Kuo-Chin, 2010. "Goodness-of-fit tests for modeling longitudinal ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1872-1880, July.
    16. Lee, Keunbaik & Mercante, Donald, 2010. "Longitudinal nominal data analysis using marginalized models," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 208-218, January.
    17. Paul S. Albert & Dean A. Follmann & Shaohua A. Wang & Edward B. Suh, 2002. "A Latent Autoregressive Model for Longitudinal Binary Data Subject to Informative Missingness," Biometrics, The International Biometric Society, vol. 58(3), pages 631-642, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0075487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.