IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0074560.html
   My bibliography  Save this article

The Relative Importance of Janzen-Connell Effects in Influencing the Spatial Patterns at the Gutianshan Subtropical Forest

Author

Listed:
  • Yan Zhu
  • Stephan Getzin
  • Thorsten Wiegand
  • Haibao Ren
  • Keping Ma

Abstract

The Janzen-Connell hypothesis is among the most important theories put forward to explain species coexistence in species-rich communities. However, the relative importance of Janzen-Connell effects with respect to other prominent mechanisms of community assembly, such as dispersal limitation, self-thinning due to competition, or habitat association, is largely unresolved. Here we use data from a 24-ha Gutianshan subtropical forest to address it. First we tested for significant associations of adults, juveniles, and saplings with environmental variables. Second we evaluated if aggregation decreased with life stage. In a third analysis we approximately factored out the effect of habitat association and comprehensively analyzed the spatial associations of intraspecific adults and offspring (saplings, juveniles) of 46 common species at continuous neighborhood distances. We found i) that, except for one, all species were associated with at least one environmental variable during at least one of their life stages, but the frequency of significant habitat associations declined with increasing life stage; ii) a decline in aggregation with increasing life stage that was strongest from juveniles to adults; and iii) intraspecific adult-offspring associations were dominated by positive relationships at neighborhood distances up to 10 m. Our results suggest that Janzen-Connell effects were not the dominant mechanisms in structuring the spatial patterns of established trees in the subtropical Gutianshan forest. The spatial patterns may rather reflect the joint effects of size-dependent self-thinning, dispersal limitation and habitat associations. Our findings contribute to a more comprehensive understanding of the relative importance of Janzen-Connell effects in influencing plant community structure under strong topographic heterogeneity.

Suggested Citation

  • Yan Zhu & Stephan Getzin & Thorsten Wiegand & Haibao Ren & Keping Ma, 2013. "The Relative Importance of Janzen-Connell Effects in Influencing the Spatial Patterns at the Gutianshan Subtropical Forest," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
  • Handle: RePEc:plo:pone00:0074560
    DOI: 10.1371/journal.pone.0074560
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074560
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074560&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0074560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyle E. Harms & S. Joseph Wright & Osvaldo Calderón & Andrés Hernández & Edward Allen Herre, 2000. "Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest," Nature, Nature, vol. 404(6777), pages 493-495, March.
    2. Mark Berman, 1986. "Testing for Spatial Association between a Point Process and Another Stochastic Process," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 35(1), pages 54-62, March.
    3. Janneke Hille Ris Lambers & James S. Clark & Brian Beckage, 2002. "Density-dependent mortality and the latitudinal gradient in species diversity," Nature, Nature, vol. 417(6890), pages 732-735, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Wills & Kyle E Harms & Thorsten Wiegand & Ruwan Punchi-Manage & Gregory S Gilbert & David Erickson & W John Kress & Stephen P Hubbell & C V Savitri Gunatilleke & I A U Nimal Gunatilleke, 2016. "Persistence of Neighborhood Demographic Influences over Long Phylogenetic Distances May Help Drive Post-Speciation Adaptation in Tropical Forests," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-24, June.
    2. repec:jss:jstsof:12:i06 is not listed on IDEAS
    3. Lister, Andrew J. & Leites, Laura P., 2018. "Modeling and simulation of tree spatial patterns in an oak-hickory forest with a modular, hierarchical spatial point process framework," Ecological Modelling, Elsevier, vol. 378(C), pages 37-45.
    4. Mazzoleni, Stefano & Bonanomi, Giuliano & Giannino, Francesco & Incerti, Guido & Dekker, Stefan C. & Rietkerk, Max, 2010. "Modelling the effects of litter decomposition on tree diversity patterns," Ecological Modelling, Elsevier, vol. 221(23), pages 2784-2792.
    5. Laura Anton-Sanchez & Pedro Larrañaga & Ruth Benavides-Piccione & Isabel Fernaud-Espinosa & Javier DeFelipe & Concha Bielza, 2017. "Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-14, June.
    6. Nicolás Younes Cárdenas & Estefanía Erazo Mera, 2016. "Landslide susceptibility analysis using remote sensing and GIS in the western Ecuadorian Andes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1829-1859, April.
    7. Denis Allard & Anders Brix & Joël Chadoeuf, 2001. "Testing Local Independence between Two Point Processes," Biometrics, The International Biometric Society, vol. 57(2), pages 508-517, June.
    8. Groeneveld, J. & Alves, L.F. & Bernacci, L.C. & Catharino, E.L.M. & Knogge, C. & Metzger, J.P. & Pütz, S. & Huth, A., 2009. "The impact of fragmentation and density regulation on forest succession in the Atlantic rain forest," Ecological Modelling, Elsevier, vol. 220(19), pages 2450-2459.
    9. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    10. Xinyu Zhou & Wei Wu, 2024. "Statistical Depth in Spatial Point Process," Mathematics, MDPI, vol. 12(4), pages 1-20, February.
    11. Cristina C Bastias & Claire Fortunel & Fernando Valladares & Christopher Baraloto & Raquel Benavides & William Cornwell & Lars Markesteijn & Alexandre A de Oliveira & Jeronimo B B Sansevero & Marcel C, 2017. "Intraspecific leaf trait variability along a boreal-to-tropical community diversity gradient," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    12. M. Barna, 2008. "The effects of cutting regimes on natural regeneration in submountain beech forests: species diversity and abundance," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 54(12), pages 533-544.
    13. Guoyu Lan & Stephan Getzin & Thorsten Wiegand & Yuehua Hu & Guishui Xie & Hua Zhu & Min Cao, 2012. "Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    14. Jiří Dvořák & Tomáš Mrkvička & Jorge Mateu & Jonatan A. González, 2022. "Nonparametric Testing of the Dependence Structure Among Points–Marks–Covariates in Spatial Point Patterns," International Statistical Review, International Statistical Institute, vol. 90(3), pages 592-621, December.
    15. Meiyu Jia & Jintun Zhang & Zhenhui Song & Sehrish Sadia, 2022. "Spatial Pattern and Ecological Process Difference Analyses of the Boundary Habitats of a Treeline Patch: A Case Study from the Li Mountain, North China," Land, MDPI, vol. 11(11), pages 1-18, November.
    16. Tiefeng Piao & Jung Hwa Chun & Hee Moon Yang & Kwangil Cheon, 2014. "Negative Density Dependence Regulates Two Tree Species at Later Life Stage in a Temperate Forest," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-6, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0074560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.