IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0053348.html
   My bibliography  Save this article

Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies

Author

Listed:
  • Kelly J Benoit-Bird
  • Brian C Battaile
  • Scott A Heppell
  • Brian Hoover
  • David Irons
  • Nathan Jones
  • Kathy J Kuletz
  • Chad A Nordstrom
  • Rosana Paredes
  • Robert M Suryan
  • Chad M Waluk
  • Andrew W Trites

Abstract

Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally.

Suggested Citation

  • Kelly J Benoit-Bird & Brian C Battaile & Scott A Heppell & Brian Hoover & David Irons & Nathan Jones & Kathy J Kuletz & Chad A Nordstrom & Rosana Paredes & Robert M Suryan & Chad M Waluk & Andrew W Tr, 2013. "Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
  • Handle: RePEc:plo:pone00:0053348
    DOI: 10.1371/journal.pone.0053348
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053348
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0053348&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0053348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew D Lowther & Christian Lydersen & Mike A Fedak & Phil Lovell & Kit M Kovacs, 2015. "The Argos-CLS Kalman Filter: Error Structures and State-Space Modelling Relative to Fastloc GPS Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-16, April.
    2. Dodson, Stephanie & Abrahms, Briana & Bograd, Steven J. & Fiechter, Jerome & Hazen, Elliott L., 2020. "Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models," Ecological Modelling, Elsevier, vol. 432(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0053348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.