IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0051352.html
   My bibliography  Save this article

A Partition Function Approximation Using Elementary Symmetric Functions

Author

Listed:
  • Ramu Anandakrishnan

Abstract

In statistical mechanics, the canonical partition function can be used to compute equilibrium properties of a physical system. Calculating however, is in general computationally intractable, since the computation scales exponentially with the number of particles in the system. A commonly used method for approximating equilibrium properties, is the Monte Carlo (MC) method. For some problems the MC method converges slowly, requiring a very large number of MC steps. For such problems the computational cost of the Monte Carlo method can be prohibitive. Presented here is a deterministic algorithm – the direct interaction algorithm (DIA) – for approximating the canonical partition function in operations. The DIA approximates the partition function as a combinatorial sum of products known as elementary symmetric functions (ESFs), which can be computed in operations. The DIA was used to compute equilibrium properties for the isotropic 2D Ising model, and the accuracy of the DIA was compared to that of the basic Metropolis Monte Carlo method. Our results show that the DIA may be a practical alternative for some problems where the Monte Carlo method converge slowly, and computational speed is a critical constraint, such as for very large systems or web-based applications.

Suggested Citation

  • Ramu Anandakrishnan, 2012. "A Partition Function Approximation Using Elementary Symmetric Functions," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0051352
    DOI: 10.1371/journal.pone.0051352
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051352
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0051352&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0051352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bakk, Audun & Høye, Johan S., 2003. "One-dimensional Ising model applied to protein folding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 504-518.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0051352. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.