IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0044070.html
   My bibliography  Save this article

Quantitative Modeling Assesses the Contribution of Bond Strengthening, Rebinding and Force Sharing to the Avidity of Biomolecule Interactions

Author

Listed:
  • Valentina Lo Schiavo
  • Philippe Robert
  • Laurent Limozin
  • Pierre Bongrand

Abstract

Cell adhesion is mediated by numerous membrane receptors. It is desirable to derive the outcome of a cell-surface encounter from the molecular properties of interacting receptors and ligands. However, conventional parameters such as affinity or kinetic constants are often insufficient to account for receptor efficiency. Avidity is a qualitative concept frequently used to describe biomolecule interactions: this includes incompletely defined properties such as the capacity to form multivalent attachments. The aim of this study is to produce a working description of monovalent attachments formed by a model system, then to measure and interpret the behavior of divalent attachments under force. We investigated attachments between antibody-coated microspheres and surfaces coated with sparse monomeric or dimeric ligands. When bonds were subjected to a pulling force, they exhibited both a force-dependent dissociation consistent with Bell’s empirical formula and a force- and time-dependent strengthening well described by a single parameter. Divalent attachments were stronger and less dependent on forces than monovalent ones. The proportion of divalent attachments resisting a force of 30 piconewtons for at least 5 s was 3.7 fold higher than that of monovalent attachments. Quantitative modeling showed that this required rebinding, i.e. additional bond formation between surfaces linked by divalent receptors forming only one bond. Further, experimental data were compatible with but did not require stress sharing between bonds within divalent attachments. Thus many ligand-receptor interactions do not behave as single-step reactions in the millisecond to second timescale. Rather, they exhibit progressive stabilization. This explains the high efficiency of multimerized or clustered receptors even when bonds are only subjected to moderate forces. Our approach provides a quantitative way of relating binding avidity to measurable parameters including bond maturation, rebinding and force sharing, provided these parameters have been determined. Also, this provides a quantitative description of the phenomenon of bond strengthening.

Suggested Citation

  • Valentina Lo Schiavo & Philippe Robert & Laurent Limozin & Pierre Bongrand, 2012. "Quantitative Modeling Assesses the Contribution of Bond Strengthening, Rebinding and Force Sharing to the Avidity of Biomolecule Interactions," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
  • Handle: RePEc:plo:pone00:0044070
    DOI: 10.1371/journal.pone.0044070
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044070
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0044070&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0044070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bryan T. Marshall & Mian Long & James W. Piper & Tadayuki Yago & Rodger P. McEver & Cheng Zhu, 2003. "Direct observation of catch bonds involving cell-adhesion molecules," Nature, Nature, vol. 423(6936), pages 190-193, May.
    2. R. Merkel & P. Nassoy & A. Leung & K. Ritchie & E. Evans, 1999. "Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy," Nature, Nature, vol. 397(6714), pages 50-53, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian J Schmidt & Jason A Papin & Michael B Lawrence, 2009. "Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-19, December.
    2. Alexandre M. J. Gomila & Gonzalo Pérez-Mejías & Alba Nin-Hill & Alejandra Guerra-Castellano & Laura Casas-Ferrer & Sthefany Ortiz-Tescari & Antonio Díaz-Quintana & Josep Samitier & Carme Rovira & Migu, 2022. "Phosphorylation disrupts long-distance electron transport in cytochrome c," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Ying Hung & Li‐Hsiang Lin & C. F. Jeff Wu, 2022. "Varying coefficient frailty models with applications in single molecular experiments," Biometrics, The International Biometric Society, vol. 78(2), pages 474-486, June.
    4. Navish Wadhwa & Alberto Sassi & Howard C. Berg & Yuhai Tu, 2022. "A multi-state dynamic process confers mechano-adaptation to a biological nanomachine," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Hyun-Kyu Choi & Peiwen Cong & Chenghao Ge & Aswin Natarajan & Baoyu Liu & Yong Zhang & Kaitao Li & Muaz Nik Rushdi & Wei Chen & Jizhong Lou & Michelle Krogsgaard & Cheng Zhu, 2023. "Catch bond models may explain how force amplifies TCR signaling and antigen discrimination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Zhaowei Liu & Haipei Liu & Andrés M. Vera & Byeongseon Yang & Philip Tinnefeld & Michael A. Nash, 2024. "Engineering an artificial catch bond using mechanical anisotropy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Steffen M Sedlak & Magnus S Bauer & Carleen Kluger & Leonard C Schendel & Lukas F Milles & Diana A Pippig & Hermann E Gaub, 2017. "Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    9. Muaz Nik Rushdi & Victor Pan & Kaitao Li & Hyun-Kyu Choi & Stefano Travaglino & Jinsung Hong & Fletcher Griffitts & Pragati Agnihotri & Roy A. Mariuzza & Yonggang Ke & Cheng Zhu, 2022. "Cooperative binding of T cell receptor and CD4 to peptide-MHC enhances antigen sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Nicola Hellen & Gregory I. Mashanov & Ianina L. Conte & Sophie Trionnaire & Victor Babich & Laura Knipe & Alamin Mohammed & Kazim Ogmen & Silvia Martin-Almedina & Katalin Török & Matthew J. Hannah & J, 2022. "P-selectin mobility undergoes a sol-gel transition as it diffuses from exocytosis sites into the cell membrane," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Jin Qian & Huajian Gao, 2010. "Soft Matrices Suppress Cooperative Behaviors among Receptor-Ligand Bonds in Cell Adhesion," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-9, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0044070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.