IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59511-w.html
   My bibliography  Save this article

Revealing the location and dynamics of a concealed binding site in the dopamine transporter

Author

Listed:
  • Rong Zhu

    (Johannes Kepler University Linz)

  • Walter Sandtner

    (Medical University of Vienna
    Medical University of Vienna)

  • Thomas Stockner

    (Medical University of Vienna)

  • Alexander Heilinger

    (Johannes Kepler University Linz)

  • Marion Holy

    (Medical University of Vienna)

  • Oliver Kudlacek

    (Medical University of Vienna)

  • Linda Wildling

    (Johannes Kepler University Linz)

  • Kusumika Saha

    (Medical University of Vienna
    Harvard Medical School)

  • Anna Sophie Fröhlich

    (Johannes Kepler University Linz)

  • Michael Bindl

    (Johannes Kepler University Linz)

  • Paraskevi Tziortzouda

    (Johannes Kepler University Linz)

  • Anna Haider

    (Johannes Kepler University Linz)

  • Julia Gobl

    (Johannes Kepler University Linz)

  • Saanfor Hubert Suh

    (Johannes Kepler University Linz)

  • Jawad Akbar Khan

    (Medical University of Vienna)

  • Julia Bicher

    (Medical University of Vienna)

  • Nina Kastner

    (Medical University of Vienna)

  • Andreas Ebner

    (Johannes Kepler University Linz)

  • Hermann J. Gruber

    (Johannes Kepler University Linz)

  • Michael Freissmuth

    (Medical University of Vienna
    Medical University of Vienna)

  • Amy Hauck Newman

    (National Institute on Drug Abuse-Intramural Research Program)

  • Harald H. Sitte

    (Medical University of Vienna
    Al-Ahliyya Amman University
    Medical University Vienna)

  • Peter Hinterdorfer

    (Johannes Kepler University Linz)

Abstract

The dopamine transporter (DAT) is linked to neuropsychiatric disorders including ADHD, Parkinson’s disease, and substance use disorders. Accordingly, DAT is the target of illicit drugs and clinically important medicines. However, the number and function of ligand binding sites in DAT is enigmatic due to conflicting data from available structures and molecular pharmacology. Herein, we design force sensors with DAT ligands and measure their interaction forces with wild-type and mutated DATs, from which two distinct populations of unbinding strengths and off-rates are detected. The high-force population is reduced by V152I and S422A mutations, or by substituting Na+ with K+ or NMDG+. In contrast, several modifications including mutation G386H, acetylation of K92 and K384, mutation K92A, mutation K384A, or protonation of H477 decrease the low-force population. The present data delineate the threshold of binding strength, which may account for certain ligand binding sites to be imperceptible in crystal or cryo-EM structures. Furthermore, the force spectra provide the information on the position and kinetic rates of a herein detected ligand binding site in DAT.

Suggested Citation

  • Rong Zhu & Walter Sandtner & Thomas Stockner & Alexander Heilinger & Marion Holy & Oliver Kudlacek & Linda Wildling & Kusumika Saha & Anna Sophie Fröhlich & Michael Bindl & Paraskevi Tziortzouda & Ann, 2025. "Revealing the location and dynamics of a concealed binding site in the dopamine transporter," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59511-w
    DOI: 10.1038/s41467-025-59511-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59511-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59511-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:plo:pone00:0016350 is not listed on IDEAS
    2. Jun Huang & Veronika I. Zarnitsyna & Baoyu Liu & Lindsay J. Edwards & Ning Jiang & Brian D. Evavold & Cheng Zhu, 2010. "The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness," Nature, Nature, vol. 464(7290), pages 932-936, April.
    3. Kevin H. Wang & Aravind Penmatsa & Eric Gouaux, 2015. "Neurotransmitter and psychostimulant recognition by the dopamine transporter," Nature, Nature, vol. 521(7552), pages 322-327, May.
    4. Jonathan A. Coleman & Evan M. Green & Eric Gouaux, 2016. "X-ray structures and mechanism of the human serotonin transporter," Nature, Nature, vol. 532(7599), pages 334-339, April.
    5. Per Plenge & Ara M. Abramyan & Gunnar Sørensen & Arne Mørk & Pia Weikop & Ulrik Gether & Benny Bang-Andersen & Lei Shi & Claus J. Loland, 2020. "The mechanism of a high-affinity allosteric inhibitor of the serotonin transporter," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    6. R. Merkel & P. Nassoy & A. Leung & K. Ritchie & E. Evans, 1999. "Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy," Nature, Nature, vol. 397(6714), pages 50-53, January.
    7. Chayne L. Piscitelli & Harini Krishnamurthy & Eric Gouaux, 2010. "Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site," Nature, Nature, vol. 468(7327), pages 1129-1132, December.
    8. Dushyant Kumar Srivastava & Vikas Navratna & Dilip K. Tosh & Audrey Chinn & Md Fulbabu Sk & Emad Tajkhorshid & Kenneth A. Jacobson & Eric Gouaux, 2024. "Structure of the human dopamine transporter and mechanisms of inhibition," Nature, Nature, vol. 632(8025), pages 672-677, August.
    9. Per Plenge & Dongxue Yang & Kristine Salomon & Louise Laursen & Iris E. Kalenderoglou & Amy H. Newman & Eric Gouaux & Jonathan A. Coleman & Claus J. Loland, 2021. "The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. repec:plo:pcbi00:1002909 is not listed on IDEAS
    11. Aravind Penmatsa & Kevin H. Wang & Eric Gouaux, 2013. "X-ray structure of dopamine transporter elucidates antidepressant mechanism," Nature, Nature, vol. 503(7474), pages 85-90, November.
    12. Jonathan A. Coleman & Dongxue Yang & Zhiyu Zhao & Po-Chao Wen & Craig Yoshioka & Emad Tajkhorshid & Eric Gouaux, 2019. "Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport," Nature, Nature, vol. 569(7754), pages 141-145, May.
    13. Yue Li & Xianping Wang & Yufei Meng & Tuo Hu & Jun Zhao & Renjie Li & Qinru Bai & Pu Yuan & Jun Han & Kun Hao & Yiqing Wei & Yunlong Qiu & Na Li & Yan Zhao, 2024. "Dopamine reuptake and inhibitory mechanisms in human dopamine transporter," Nature, Nature, vol. 632(8025), pages 686-694, August.
    14. Jeppe C. Nielsen & Kristine Salomon & Iris E. Kalenderoglou & Sarah Bargmeyer & Tillmann Pape & Azadeh Shahsavar & Claus J. Loland, 2024. "Structure of the human dopamine transporter in complex with cocaine," Nature, Nature, vol. 632(8025), pages 678-685, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Li & Yiqing Wei & Renjie Li & Yufei Meng & Jun Zhao & Qinru Bai & Gang Wang & Yan Zhao, 2025. "Modulation of the human GlyT1 by clinical drugs and cholesterol," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Ralph Gradisch & Katharina Schlögl & Erika Lazzarin & Marco Niello & Julian Maier & Felix P. Mayer & Leticia Alves da Silva & Sophie M. C. Skopec & Randy D. Blakely & Harald H. Sitte & Marko D. Mihovi, 2024. "Ligand coupling mechanism of the human serotonin transporter differentiates substrates from inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Andreas Nygaard & Linda G. Zachariassen & Kathrine S. Larsen & Anders S. Kristensen & Claus J. Loland, 2024. "Fluorescent non-canonical amino acid provides insight into the human serotonin transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Solveig G. Schmidt & Mette Galsgaard Malle & Anne Kathrine Nielsen & Søren S.-R. Bohr & Ciara F. Pugh & Jeppe C. Nielsen & Ida H. Poulsen & Kasper D. Rand & Nikos S. Hatzakis & Claus J. Loland, 2022. "The dopamine transporter antiports potassium to increase the uptake of dopamine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Ravi Yadav & Gye Won Han & Cornelius Gati, 2025. "Molecular basis of human GABA transporter 3 inhibition," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. repec:plo:pone00:0166196 is not listed on IDEAS
    7. Talia Zeppelin & Lucy Kate Ladefoged & Steffen Sinning & Xavier Periole & Birgit Schiøtt, 2018. "A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-24, January.
    8. Huanyu Z. Li & Ashley C. W. Pike & Irina Lotsaris & Gamma Chi & Jesper S. Hansen & Sarah C. Lee & Karin E. J. Rödström & Simon R. Bushell & David Speedman & Adam Evans & Dong Wang & Didi He & Leela Sh, 2024. "Structure and function of the SIT1 proline transporter in complex with the COVID-19 receptor ACE2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Sarah B Robinson & Osama Refai & J Andrew Hardaway & Sarah Sturgeon & Tessa Popay & Daniel P Bermingham & Phyllis Freeman & Jane Wright & Randy D Blakely, 2019. "Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
    10. Alexandre M. J. Gomila & Gonzalo Pérez-Mejías & Alba Nin-Hill & Alejandra Guerra-Castellano & Laura Casas-Ferrer & Sthefany Ortiz-Tescari & Antonio Díaz-Quintana & Josep Samitier & Carme Rovira & Migu, 2022. "Phosphorylation disrupts long-distance electron transport in cytochrome c," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Junyang Xu & Ziwei Hu & Lu Dai & Aditya Yadav & Yashan Jiang & Angelika Bröer & Michael G. Gardiner & Malcolm McLeod & Renhong Yan & Stefan Bröer, 2024. "Molecular basis of inhibition of the amino acid transporter B0AT1 (SLC6A19)," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Hyun-Kyu Choi & Peiwen Cong & Chenghao Ge & Aswin Natarajan & Baoyu Liu & Yong Zhang & Kaitao Li & Muaz Nik Rushdi & Wei Chen & Jizhong Lou & Michelle Krogsgaard & Cheng Zhu, 2023. "Catch bond models may explain how force amplifies TCR signaling and antigen discrimination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. repec:plo:pcbi00:1003603 is not listed on IDEAS
    14. Yueyang Sun & Lu Yan & Jiajia Sun & Mingshu Xiao & Wei Lai & Guangqi Song & Li Li & Chunhai Fan & Hao Pei, 2022. "Nanoscale organization of two-dimensional multimeric pMHC reagents with DNA origami for CD8+ T cell detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Steffen M Sedlak & Magnus S Bauer & Carleen Kluger & Leonard C Schendel & Lukas F Milles & Diana A Pippig & Hermann E Gaub, 2017. "Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    17. repec:plo:pcbi00:1002246 is not listed on IDEAS
    18. Muaz Nik Rushdi & Victor Pan & Kaitao Li & Hyun-Kyu Choi & Stefano Travaglino & Jinsung Hong & Fletcher Griffitts & Pragati Agnihotri & Roy A. Mariuzza & Yonggang Ke & Cheng Zhu, 2022. "Cooperative binding of T cell receptor and CD4 to peptide-MHC enhances antigen sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Renske M A Vroomans & Athanasius F M Marée & Rob J de Boer & Joost B Beltman, 2012. "Chemotactic Migration of T Cells towards Dendritic Cells Promotes the Detection of Rare Antigens," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-13, November.
    20. Dohyun Im & Mika Jormakka & Narinobu Juge & Jun-ichi Kishikawa & Takayuki Kato & Yukihiko Sugita & Takeshi Noda & Tomoko Uemura & Yuki Shiimura & Takaaki Miyaji & Hidetsugu Asada & So Iwata, 2024. "Neurotransmitter recognition by human vesicular monoamine transporter 2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    21. Weidong An & Yiwei Gao & Laihua Liu & Qinru Bai & Jun Zhao & Yan Zhao & Xuejun C. Zhang, 2025. "Structural basis of urea transport by Arabidopsis thaliana DUR3," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    22. Valentina Lo Schiavo & Philippe Robert & Laurent Limozin & Pierre Bongrand, 2012. "Quantitative Modeling Assesses the Contribution of Bond Strengthening, Rebinding and Force Sharing to the Avidity of Biomolecule Interactions," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    23. Jin Qian & Huajian Gao, 2010. "Soft Matrices Suppress Cooperative Behaviors among Receptor-Ligand Bonds in Cell Adhesion," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-9, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59511-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.