IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0042933.html
   My bibliography  Save this article

Feasibility of Fecal MicroRNAs as Novel Biomarkers for Pancreatic Cancer

Author

Listed:
  • Alexander Link
  • Verena Becker
  • Ajay Goel
  • Thomas Wex
  • Peter Malfertheiner

Abstract

Introduction: Pancreatic cancer (PCA) is an aggressive tumor that associates with high mortality rates. Majority of PCA patients are diagnosed usually at late tumor stages when the therapeutic options are limited. MicroRNAs (miRNA) are involved in tumor development and are commonly dysregulated in PCA. As a proof-of-principle study, we aimed to evaluate the potential of fecal miRNAs as biomarkers for pancreatic cancer. Materials and Methods: Total RNA was extracted from feces using Qiagen's miRNA Mini Kit. For miRNA expression analyses we selected a subset of 7 miRNAs that are frequently dysregulated in PCA (miR-21, -143, -155, -196a, -210, -216a, -375). Subsequently, expression levels of these miRNAs were determined in fecal samples from controls (n = 15), chronic pancreatitis (n = 15) and PCA patients (n = 15) using quantitative TaqMan-PCR assays. Results: All selected miRNAs were detectable in fecal samples with high reproducibility. Four of seven miRNAs (miR-216a, -196a, -143 und -155) were detected at lower concentrations in feces of PCA patients when compared to controls (p

Suggested Citation

  • Alexander Link & Verena Becker & Ajay Goel & Thomas Wex & Peter Malfertheiner, 2012. "Feasibility of Fecal MicroRNAs as Novel Biomarkers for Pancreatic Cancer," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0042933
    DOI: 10.1371/journal.pone.0042933
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042933
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0042933&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0042933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew N. Poy & Lena Eliasson & Jan Krutzfeldt & Satoru Kuwajima & Xiaosong Ma & Patrick E. MacDonald & Sébastien Pfeffer & Thomas Tuschl & Nikolaus Rajewsky & Patrik Rorsman & Markus Stoffel, 2004. "A pancreatic islet-specific microRNA regulates insulin secretion," Nature, Nature, vol. 432(7014), pages 226-230, November.
    2. Victor Ambros, 2004. "The functions of animal microRNAs," Nature, Nature, vol. 431(7006), pages 350-355, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thuc Duy Le & Junpeng Zhang & Lin Liu & Jiuyong Li, 2015. "Ensemble Methods for MiRNA Target Prediction from Expression Data," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
    2. José María Galván-Román & Ángel Lancho-Sánchez & Sergio Luquero-Bueno & Lorena Vega-Piris & Jose Curbelo & Marcos Manzaneque-Pradales & Manuel Gómez & Hortensia de la Fuente & Mara Ortega-Gómez & Javi, 2020. "Usefulness of circulating microRNAs miR-146a and miR-16-5p as prognostic biomarkers in community-acquired pneumonia," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-13, October.
    3. Kshitij Srivastava & Anvesha Srivastava, 2012. "Comprehensive Review of Genetic Association Studies and Meta-Analyses on miRNA Polymorphisms and Cancer Risk," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-1, November.
    4. Yanyan Wang & Yujie Zhang & Chi Pan & Feixia Ma & Suzhan Zhang, 2015. "Prediction of Poor Prognosis in Breast Cancer Patients Based on MicroRNA-21 Expression: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-13, February.
    5. Charlotte Glinge & Sebastian Clauss & Kim Boddum & Reza Jabbari & Javad Jabbari & Bjarke Risgaard & Philipp Tomsits & Bianca Hildebrand & Stefan Kääb & Reza Wakili & Thomas Jespersen & Jacob Tfelt-Han, 2017. "Stability of Circulating Blood-Based MicroRNAs – Pre-Analytic Methodological Considerations," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    6. Hossain Ahmed & Beyene Joseph, 2013. "Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 743-755, December.
    7. repec:plo:pone00:0054215 is not listed on IDEAS
    8. Hai Lian & Lei Wang & Jingmin Zhang, 2012. "Increased Risk of Breast Cancer Associated with CC Genotype of Has-miR-146a Rs2910164 Polymorphism in Europeans," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-7, February.
    9. Le Thi Truc Linh, 2018. "The Microrna 29 family and its regulation," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 8(1), pages 18-27.
    10. Seyedehsadaf Asfa & Halil Ibrahim Toy & Reza Arshinchi Bonab & George P. Chrousos & Athanasia Pavlopoulou & Styliani A. Geronikolou, 2023. "Soft Tissue Ewing Sarcoma Cell Drug Resistance Revisited: A Systems Biology Approach," IJERPH, MDPI, vol. 20(13), pages 1-17, July.
    11. repec:plo:pone00:0073443 is not listed on IDEAS
    12. repec:plo:pone00:0064393 is not listed on IDEAS
    13. Li Li & Yunjian Sheng & Lin Lv & Jian Gao, 2013. "The Association between Two MicroRNA Variants (miR-499, miR-149) and Gastrointestinal Cancer Risk: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    14. Blanca Elena Castro-Magdonel & Manuela Orjuela & Diana E Alvarez-Suarez & Javier Camacho & Lourdes Cabrera-Muñoz & Stanislaw Sadowinski-Pine & Aurora Medina-Sanson & Citlali Lara-Molina & Daphne Garcí, 2020. "Circulating miRNome detection analysis reveals 537 miRNAS in plasma, 625 in extracellular vesicles and a discriminant plasma signature of 19 miRNAs in children with retinoblastoma from which 14 are al," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-19, April.
    15. Adam Emmer, 2019. "The careers behind and the impact of solo author articles in Nature and Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 825-840, August.
    16. repec:plo:pone00:0064924 is not listed on IDEAS
    17. Junpeng Zhang & Taosheng Xu & Lin Liu & Wu Zhang & Chunwen Zhao & Sijing Li & Jiuyong Li & Nini Rao & Thuc Duy Le, 2020. "LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-22, April.
    18. Hisakazu Iwama & Kiyohito Kato & Hitomi Imachi & Koji Murao & Tsutomu Masaki, 2018. "Human microRNAs preferentially target genes with intermediate levels of expression and its formation by mammalian evolution," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    19. repec:plo:pone00:0079135 is not listed on IDEAS
    20. Hongbo Shi & Guangde Zhang & Meng Zhou & Liang Cheng & Haixiu Yang & Jing Wang & Jie Sun & Zhenzhen Wang, 2016. "Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    21. repec:plo:pone00:0030221 is not listed on IDEAS
    22. Haiyan Chu & Meilin Wang & Danni Shi & Lan Ma & Zhizhong Zhang & Na Tong & Xinying Huo & Wei Wang & Dewei Luo & Yan Gao & Zhengdong Zhang, 2011. "Hsa-miR-196a2 Rs11614913 Polymorphism Contributes to Cancer Susceptibility: Evidence from 15 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-6, March.
    23. Pamela R Matias-Garcia & Rory Wilson & Veronika Mussack & Eva Reischl & Melanie Waldenberger & Christian Gieger & Gabriele Anton & Annette Peters & Andrea Kuehn-Steven, 2020. "Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    24. repec:plo:pone00:0013080 is not listed on IDEAS
    25. Xing Chen & Jun Yin & Jia Qu & Li Huang, 2018. "MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-24, August.
    26. Thierry Chekouo & Francesco C. Stingo & James D. Doecke & Kim-Anh Do, 2015. "miRNA–target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer," Biometrics, The International Biometric Society, vol. 71(2), pages 428-438, June.
    27. Xing Chen & Li Huang, 2017. "LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction," PLOS Computational Biology, Public Library of Science, vol. 13(12), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0042933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.